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Abstract. This study introduces a training-free conditional diffusion model for learning un-
known SDEs using data. The proposed approach addresses key challenges in computational efficiency
and accuracy for modeling SDEs by utilizing a score-based diffusion model to approximate their sto-
chastic flow map. Unlike the existing methods, this technique is based on an analytically derived
closed-form exact score function, which can be efficiently estimated by Monte Carlo methods using
the trajectory data, and eliminates the need for neural network training to learn the score function.
By generating labeled data through solving the corresponding reverse ODE, the approach enables
supervised learning of the flow map. Extensive numerical experiments across various SDE types, in-
cluding linear, nonlinear, and multidimensional systems, demonstrate the versatility and effectiveness
of the method. The learned models exhibit significant improvements in predicting both short-term
and long-term behaviors of unknown stochastic systems, often surpassing baseline methods such as
generative adversarial networks in estimating drift and diffusion coefficients.
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1. Introduction. SDEs play a pivotal role in scientific and engineering sim-
ulations, particularly when modeling large ensembles of particles. These equations
find diverse applications across fields such as plasma physics, where they describe
electron and ion interactions with electromagnetic fields, and fluid mechanics, where
they model the dispersion of pollutants in oceans and the atmosphere. SDEs also
prove valuable in simulating biological and chemical systems. From a mathemati-
cal standpoint, SDEs offer a discrete particle representation that corresponds to the
continuous Fokker--Planck equation, underpinning Monte Carlo methods for solving
PDEs. While highly valuable, the use of SDEs faces a significant challenge: For many
complex systems, it is difficult, if not impossible, to derive accurate SDE models that
capture all the important physics embedded in these systems.

Recent years have seen a growing interest in developing data-driven approaches
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A CONDITIONAL DIFFUSION MODEL FOR LEARNING SDEs C1145

for uncovering unknown dynamical systems. The primary objective is to unearth the
core principles or mathematical formulations underlying observational data, enabling
the creation of effective predictive models for unexplored dynamics. When dealing
with stochastic systems, the presence of data noise and the inability to directly ob-
serve the system's inherent randomness present considerable obstacles to understand-
ing the system. Most existing approaches concentrate on analyzing It\^o-type SDEs.
These methods utilize various techniques, including Gaussian processes [1, 10, 26],
polynomial approximations [20, 37], sparse regression such as stochastic SINDy [36],
and deep neural networks [6, 7, 39]. A recent development involves the extension of
the deterministic flow map approach to stochastic scenarios, incorporating generative
models such as generative adversarial networks (GANs) [8, 27], autoencoders [9, 38],
and normalizing flows [41]. The performance of polynomial approximation or sparse
regression methods such as SINDy [36] is highly dependent on the choice of the dic-
tionary. These methods are therefore most effective when reliable prior knowledge
about the drift and diffusion terms of the dynamical system is available. In contrast,
generative model--based approaches offer more robust performance in scenarios where
such prior information is limited or unavailable.

Despite the success of generative models in learning SDEs, there is a significant
challenge in training the generative models to achieve the desired accuracy. Due to the
lack of labeled data, training generative models is usually classified as unsupervised
learning. Various unsupervised loss functions have been defined to train generative
models, including adversarial loss for GANs [14], the maximum likelihood loss for
normalizing flows [17], and the score matching losses for diffusion models [16, 32, 35].
There are several computational issues resulting from the unsupervised training nature
of generative models. For example, the training of GANs may suffer from mode
collapse, vanishing gradients, and training instability [30]. The maximum likelihood
loss used in normalizing flows requires efficient computation of the determinant of the
Jacobian matrix, which places restrictions on the architectures of networks [17].

In this work, we propose a training-free conditional diffusion model that enables
supervised learning of unknown SDEs under diverse noise distributions, encompass-
ing both Gaussian and non-Gaussian cases. Diffusion models have been successfully
used in a variety of applications, including image processing [15, 29, 31, 33], natural
language processing [5, 13, 19, 42], and uncertainty quantification [2, 3, 4, 12, 18, 21,
22, 23]. Unlike existing diffusion models [24, 33, 40], our method does not need to
train neural networks to learn the conditional score function. Specifically, we derived
the closed form of the exact score function for the conditional diffusion model used to
approximate the stochastic flow map of the target SDE. In fact, the score function can
be represented as an expectation with respect to the conditional distribution defined
by the flow map. However, since we use trajectories of the target SDE as observation
data, we do not have a large number of samples from each conditional distribution.
Instead, the trajectory data can be treated as samples from the joint distribution of
the input and the output of the flow map. Thus, we propose an approximate score
function that involves a weighted expectation with respect to the joint distribution
and use Monte Carlo estimators (based on the trajectory data) to approximate the
expectation. This approach allows us to directly generate samples of the target flow
map. With the estimated score function, we then generate labeled data by solving the
corresponding reverse ODE instead of the reverse SDE for the diffusion model. Fol-
lowing this, we employ the generated labeled data to train a simple fully connected
neural network to learn the flow map via supervised learning. Our method shows
remarkable accuracy in predicting both short-term and long-term behaviors of sto-
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C1146 Y. LIU, Y. CHEN, D. XIU, AND G. ZHANG

chastic systems, often outperforming baseline methods such as GANs [8] in terms of
drift and diffusion coefficient estimation, as well as in predicting mean and standard
deviation at termination times.

The rest of this paper is organized as follows. In section 2, we briefly introduce
the learning of unknown stochastic dynamical systems under consideration. In sec-
tion 3, we provide a comprehensive discussion of a conditional score--based generative
diffusion model to learn the flow map. Finally, in section 4, we demonstrate the per-
formance of our method by applying it to a set of benchmark stochastic dynamical
systems.

2. Problem setting. Let \{ \Omega ,\scrF ,\BbbP ,\{ \scrF t\} 0\leq t\leq T \} be a complete, filtered probabil-
ity space on which a standard m-dimensional Brownian motion Wt is defined such
that \{ \scrF t\} 0\leq t\leq T is the natural filtration of the Brownian motion Wt and all the \BbbP -null
sets are augmented to each \sigma -field \scrF t. In the probability space \{ \Omega ,\scrF ,\BbbP ,\{ \scrF t\} 0\leq t\leq T \} ,
we define the following d-dimensional SDE:

dXt = a(Xt)dt+ b(Xt)dWt,(2.1)

where a :\BbbR d \rightarrow \BbbR d is referred to as the drift coefficient and b :\BbbR d \rightarrow \BbbR d\times m with m\leq d
is referred to as the diffusion coefficient. Assuming that a(x) and b(x) satisfy the
Lipschitz condition and the linear growth condition, the SDE in (2.1) has a unique
solution,

Xt,x
t+\Delta t = x+

\int t+\Delta t

t

a(Xt,x
s )ds+

\int t+\Delta t

t

b(Xt,x
s )dWs with Xt = x,(2.2)

for any 0 \leq t \leq T and \Delta t > 0, where Xt,x
t+\Delta t is the solution of the SDE at t + \Delta t

conditional on Xt = x and
\int t+\Delta t

t
b(Xt,x

s )dWs is an It\^o integral. Because both the drift
and diffusion terms do not explicitly depend on the time t, the probability distribution
of increment Xt,x

t+\Delta t - x only depends on the starting location x and the time step \Delta t
regardless of the time instant t in (2.2). Therefore, the representation in (2.2) defines
a stochastic flow map,

F\Delta t(x,\omega ) :=Xx
\Delta t  - x,(2.3)

where we omit the dependence of Xx
\Delta t on t, \omega represents the sample from the proba-

bility space \{ \Omega ,\scrF ,\BbbP ,\{ \scrF t\} 0\leq t\leq T \} , and F\Delta t(x,\omega ) is independent of t\in [0, T ].
The objective of this work is to build a conditional generative model, denoted by

G\theta (x, z), to approximate the exact flow map F\Delta t(x,\omega ) in (2.3), i.e.,

G\theta (x, z)\approx F\Delta t(x,\omega ),(2.4)

where x denotes a sample of Xt for t \in [0, T ], z denotes a sample from the standard
normal distribution, and \theta denotes the set of trainable parameters of the conditional
generative model. For notational simplicity, we omit the subscript \Delta t in G\theta (x, z) in
the rest of this paper. Also, we introduce a uniform temporal mesh,

\scrT := \{ tn : tn = n\Delta t for n= 0,1, . . . ,NT \} ,(2.5)

where \Delta t= T/NT , and we focus on approximating the flow map F\Delta t(x,\omega ) defined by
the time step \Delta t associated with the temporal mesh \scrT . Once the generative model
G\theta (x, z) is well trained, it can be used to efficiently generate unlimited trajectories of
the SDE in (2.1) in an autoregressive manner.
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A CONDITIONAL DIFFUSION MODEL FOR LEARNING SDEs C1147

The observation dataset of the target SDE includes H \geq 1 solution trajectories of
Xt at discrete time instants on the uniform temporal mesh \scrT in (2.5), denoted by

X
(i)
t0 ,X

(i)
t1 , \cdot \cdot \cdot ,X

(i)
tL , i= 1, \cdot \cdot \cdot ,H,(2.6)

where \{ t0, t1, . . . , tL\} \in \scrT , L + 1 denotes the length of the ith trajectory, and the

initial state X
(i)
t0 is a sample from a given initial distribution pX0

(x). The trajectory
data in (2.6) can be separated and regrouped to obtain data pairs that can be used
to describe the input-output relationship of the flow map F\Delta t(x,\omega ), i.e.,

xm :=X
(i)
tl

and \Delta xm :=X
(i)
tl+1

 - X
(i)
tl

(2.7)

for m= l\times H + i with l= 0, . . . ,L - 1, i= 1, . . . ,H, which leads to a total of M =HL
adjacent data pairs. We denote the collection of the paired samples as the observation
dataset for the flow map, i.e.,

\scrD obs := \{ (xm,\Delta xm) | m= 1, \cdot \cdot \cdot ,M =HL\} .(2.8)

The next section will describe how to use the observation dataset \scrD obs in (2.8) to
perform a supervised training of the desired generative model in (2.3).

3. The conditional diffusion model for supervised learning of the flow
map. We now describe the details of the proposed training-free conditional diffusion
model for learning the flow map of interest. Section 3.1 introduces the conditional
score--based diffusion model, section 3.2 introduces the definition of the conditional
score function as well as its training-free approximation scheme, and section 3.3 de-
scribes how to use the proposed conditional diffusion model to generate labeled data
for supervised training of the desired conditional generative model G\theta (\cdot , \cdot ) in (2.4).

3.1. The conditional score--based diffusion model. We intend to define a
score-based diffusion model to represent a transport map from a standard normal
random variable, denoted by Z \sim \scrN (0, Id), to the random variable Xx

\Delta t  - x in (2.3)
conditional on Xt = x for any t \in [0, T ]. It is referred to as a conditional diffusion
model because the generated probability distribution also depends on the conditional
state x. The diffusion model includes a forward SDE and a reverse SDE, both of which
are defined in a bounded temporal domain \tau \in [0,1]. The forward SDE is defined by

dZx
\tau = b(\tau )Zx

\tau d\tau + \sigma (\tau )dW\tau with Zx
0 =Xx

\Delta t  - x,(3.1)

where Zx
0 is the target random variable Xx

\Delta t  - x for a fixed x. Note that the entire
forward SDE for the diffusion model is conditional on Xt = x for any t\in [0, T ]. When
properly choosing the drift and diffusion coefficients, the forward SDE can transport
the initial distribution pZx

0
(zx0 ) to the standard normal distribution at \tau = 1. In this

work, we use the following definitions of b(\tau ) and \sigma (\tau ) in (3.1):

b(\tau ) =
d log\alpha \tau 

d\tau 
and \sigma 2(\tau ) =

d\beta 2
\tau 

d\tau 
 - 2

d log\alpha \tau 

d\tau 
\beta 2
\tau ,(3.2)

where \alpha \tau and \beta \tau are set as

\alpha \tau = 1 - \tau , \beta 2
\tau = \tau for \tau \in [0,1).(3.3)

Because the forward process in (3.1) is a linear SDE, its solution is

Zx
\tau =Zx

0 exp

\biggl[ \int \tau 

0

b(s)ds

\biggr] 
+

\int \tau 

0

exp

\biggl[ \int \tau 

s

b(r)dr

\biggr] 
\sigma (s)dWs.(3.4)
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C1148 Y. LIU, Y. CHEN, D. XIU, AND G. ZHANG

Substituting b(\tau ) and \sigma (\tau ) defined in (3.2) into (3.4), we have the conditional PDF
qZx

\tau | Zx
0
(zx\tau | zx0 ) for a fixed zx0 being a Gaussian distribution,

qZx
\tau | Zx

0
(zx\tau | zx0 ) =\psi (\alpha \tau zx

0 ,\beta 
2
\tau Id)

(zx\tau | zx0 ),(3.5)

where \psi (\alpha \tau zx
0 ,\beta 

2
\tau Id)

(\cdot ) is the standard normal PDF with mean \alpha \tau z
x
0 and covariance

matrix \beta 2
\tau Id. Then the asymptotic limit of qZx

\tau | Zx
0
(zx\tau | zx0 ) as \tau \rightarrow 1 is the standard

normal distribution, which means that the forward SDE can transport any initial
distribution to the standard normal distribution within a bounded pseudotemporal
domain [0,1).

The corresponding reverse SDE, which is used to generate new samples of the
target distribution, is defined by

dZx
\tau =

\bigl[ 
b(\tau )Zx

\tau  - \sigma 2(\tau )S(Zx
\tau , \tau )

\bigr] 
d\tau + \sigma (\tau )dB\tau withZx

1 =Z \sim \scrN (0, Id),(3.6)

where B\tau is the reverse-time Brownian motion and S(zx\tau , \tau ) is the score function
defined by

S(zx\tau , \tau ) :=\nabla z log pZx
\tau 
(zx\tau ),(3.7)

where pZx
\tau 
(zx\tau ) is the PDF of the state Zx

\tau in the forward SDE in (3.1). The reverse
SDE in (3.6) performs as a denoiser which can transform the standard normal distri-
bution of pZx

1
(zx1 ) to the target distribution pZx

0
(zx0 ) for Zx

0 = Xx
\Delta t  - x. If the score

function is known, then we can solve the reverse SDE in (3.6) to generate an unlim-
ited amount of samples of the flow map in (2.3). The standard score-based diffusion
model uses a neural network to learn the score function, which is computationally
intensive because it requires solving the reverse SDE to generate each sample of the
target distribution. Moreover, when estimating the score function, the neural network
is trained in an unsupervised manner due to the lack of labeled data, which requires
storing a large number of trajectories of the forward SDE to be used to train the score
function approximation.

3.2. Training-free score estimation. We introduce the score estimation ap-
proach in this subsection. To proceed, we first write out the PDF pZx

\tau 
(zx\tau ) in (3.7) as

the following integral form:

qZx
\tau 
(zx\tau ) =

\int 
\BbbR d

qZx
\tau ,Z

x
0
(zx\tau , z

x
0 )dz

x
0 =

\int 
\BbbR d

qZx
\tau | Zx

0
(zx\tau | zx0 )qZx

0
(zx0 )dz

x
0 ,(3.8)

where qZx
\tau | Zx

0
(zx\tau | zx0 ) is defined in (3.5) and qZx

0
(zx0 ) is represented by

qZx
0
(zx0 ) = pXx

\Delta t - x(z
x
0 ),(3.9)

according to the definition Zx
0 =Xx

\Delta t  - x given in (3.1). Substituting (3.8) and (3.9)
into (3.7), we have

S(zx\tau , \tau ) =\nabla z log

\biggl( \int 
\BbbR d

qZx
\tau | Zx

0
(zx\tau | zx0 )qZx

0
(zx0 )dz

x
0

\biggr) 
=

1\int 
\BbbR d qZx

\tau | Zx
0
(zx\tau | \=zx0 )qZx

0
(\=zx0 )d\=z

x
0

\int 
\BbbR d

 - z
x
\tau  - \alpha \tau z

x
0

\beta 2
\tau 

qZx
\tau | Zx

0
(zx\tau | zx0 )qZx

0
(zx0 )dz

x
0

=

\int 
\BbbR d

 - z
x
\tau  - \alpha \tau z

x
0

\beta 2
\tau 

w(zx\tau , z
x
0 )qZx

0
(zx0 )dz

x
0 ,

(3.10)
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A CONDITIONAL DIFFUSION MODEL FOR LEARNING SDEs C1149

where the weight function w(zx\tau , z
x
0 ) is defined by

w(zx\tau , z
x
0 ) :=

qZx
\tau | Zx

0
(zx\tau | zx0 )\int 

\BbbR d

qZx
\tau | Zx

0
(zx\tau | \=zx0 )qZx

0
(\=zx0 )d\=z

x
0

,(3.11)

satisfying
\int 
\BbbR d w(z

x
\tau , z

x
0 )qZx

0
(zx0 )dz

x
0 = 1.

Instead of training a neural network to learn the score function, we use Monte
Carlo estimation to directly approximate the integrals in (3.10). Unlike unconditional
diffusion models where we have samples from qZx

0
(zx0 ) as the observation data, we do

not have a large number of samples from Zx
0 =Xx

\Delta t - x for any fixed x due to the way
the observation dataset \scrD obs in (2.8) is constructed. On the other hand, there may
be many samples in \scrD obs that are located within a small neighborhood of x. Hence,
we need to develop an approximation to the initial distribution qZx

0
(zx0 ). Specifically,

we can rewrite qZx
0
(zx0 ) as

qZx
0
(zx0 ) =

\int 
\BbbR d

qZ\~x
0
(z\~x0 )\delta (\~x - x)d\~x,(3.12)

where \delta (\cdot ) is the Dirac delta function. If we treat \delta (\~x - x) as a posterior distribution
of \~x conditional on x, then we can define an approximation scheme of \delta (\~x - x) using
the Bayesian formula

\delta (\~x - x)\approx \psi (x, \nu 2Id)(\~x)pX(\~x),(3.13)

where \psi (x, \nu 2Id)(\~x) is the Gaussian likelihood with mean x and standard deviation \nu >
0 and pX(\~x) is the prior distribution. It is easy to see that the posterior distribution
\psi (x, \nu 2Id)(\~x)pX(\~x) converges to \delta (\~x - x) as \nu \rightarrow 0 in (3.13). Substituting (3.13) into
(3.12), we have an approximation of qZx

0
(zx0 ), i.e.,

qZx
0
(zx0 )\approx \widehat qZx

0
(zx0 ) :=

\int 
\BbbR d

\psi (x, \nu 2Id)(\~x) qZ\~x
0
(z\~x0 )pX(\~x)d\~x,(3.14)

where the product qZ\~x
0
(z\~x0 )pX(\~x) is treated as a joint PDF of (\~x, z\~x0 ), denoted by

qX,Z0(\~x, z
\~x
0 ) := qZ\~x

0
(z\~x0 )pX(\~x).(3.15)

Substituting (3.14) into (3.10), we have an approximate score function as follows:

\widehat S(zx\tau , \tau ) :=\nabla z log

\biggl( \int 
\BbbR d

\int 
\BbbR d

\Bigl[ 
qZ\~x

\tau | Z\~x
0
(zx\tau | z\~x0 )\psi (x, \nu 2Id)(\~x)

\Bigr] 
qX,Z0(\~x, z

\~x
0 )dz

\~x
0d\~x

\biggr) 

=

\int 
\BbbR d

\int 
\BbbR d

 - z
x
\tau  - \alpha \tau z

\~x
0

\beta 2
\tau 

\Bigl[ 
qZ\~x

\tau | Z\~x
0
(zx\tau | z\~x0 )\psi (x, \nu 2Id)(\~x)

\Bigr] 
qX,Z0

(\~x, z\~x0 )dz
\~x
0d\~x\int 

\BbbR d

\int 
\BbbR d

\bigl[ 
qZ\=x

\tau | Z\=x
0
(zx\tau | \=z\=x0 )\psi (x, \nu 2Id)(\=x)

\bigr] 
qX,Z0(\=x, \=z

\=x
0 )d\=z

\=x
0d\=x

=

\int 
\BbbR d

\int 
\BbbR d

 - z
x
\tau  - \alpha \tau z

\~x
0

\beta 2
\tau 

\widehat w(zx\tau , z\~x0 ) qX,Z0
(\~x, z\~x0 )dz

\~x
0 d\~x,

(3.16)

where the weight function \widehat w(zx\tau , z\~x0 ) is defined by

\widehat w(zx\tau , z\~x0 ) := qZ\~x
\tau | Z\~x

0
(zx\tau | z\~x0 )\psi (x, \nu 2Id)(\~x)\int 

\BbbR d

\int 
\BbbR d

\bigl[ 
qZ\=x

\tau | Z\=x
0
(zx\tau | \=z\=x0 )\psi (x, \nu 2Id)(\=x)

\bigr] 
qX,Z0(\=x, \=z

\=x
0 )d\=z

\=x
0d\=x

,(3.17)
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C1150 Y. LIU, Y. CHEN, D. XIU, AND G. ZHANG

satisfying that
\int 
\BbbR d

\int 
\BbbR d \widehat w(zx\tau , z\~x0 )qX,Z0(\~x, z

\~x
0 )dz

\~x
0d\~x= 1.

Note that we have not yet specified the prior distribution pX(\~x) in (3.13). In
this work, we assume that the samples \{ xm\} Mm=1 of \scrD obs are samples from the prior
distribution pX(\~x). Then \{ (xm,\Delta xm)\} Mm=1 are samples from the joint distribution
defined in (3.15). Therefore, we can use the samples in \scrD obs to define the Monte
Carlo estimator of \widehat S(zx\tau , \tau ) in (3.16) as follows:

\widehat SMC(zx\tau , \tau ) :=
1

M

M\sum 
m=1

 - z
x
\tau  - \alpha \tau z

xm
0

\beta 2
\tau 

\widehat wMC(zx\tau , z
xm
0 ),(3.18)

where the weight \widehat wMC(zx\tau , z
xm
0 ) is defined by

\widehat wMC(zx\tau , z
xm
0 ) :=

exp

\biggl\{ 
 - (zx\tau  - \alpha \tau \Delta xm)2

2\beta 2
\tau 

\biggr\} 
exp

\biggl\{ 
 - \| x - xm\| 22

2\nu 2

\biggr\} 
M\sum 

m\prime =1

exp

\biggl\{ 
 - (zx\tau  - \alpha \tau \Delta xm\prime )2

2\beta 2
\tau 

\biggr\} 
exp

\biggl\{ 
 - \| x - xm\prime \| 22

2\nu 2

\biggr\} (3.19)

for zxm
0 =\Delta xm and m= 1, . . . ,M . We observe that exp\{  - \| x - xm\| 22/(2\nu 2)\} in (3.19)

determines how much contribution each sample in \scrD obs makes to the calculation of the
approximate score function \widehat SMC. The expressions in (3.18) and (3.19) are mathemati-
cally rigorous in the sense that \widehat SMC converges to the exact score as \nu \rightarrow 0 andM \rightarrow \infty .
However, (3.18) and (3.19) may be computationally expensive, especially when M is
very large. Therefore, in the numerical experiments in section 4, we select a subset1

of \scrD obs that contains the closest neighboring samples around x and only compute the
weight exp\{  - \| x - xm\| 22/(2\nu 2)\} for the subset with \nu = 1. In this way, a much smaller
number of samples are involved in the computation of the Monte Carlo estimator \widehat SMC.
Moreover, because exp\{  - \| x - xm\| 22/(2\nu 2)\} is independent of the pseudotime \tau , we
do not need to update the subset during the solving of the reverse SDE.

There are several advantages of the proposed training-free score estimators com-
pared to learning the score function using neural networks. First, our method does
not require solving the forward SDE in (3.1) and storing a large number of trajectories
because it does not need to use the trajectory data to train a neural network to learn
the score function. Instead, our method can directly solve the reverse SDE in (3.6)
and use the Monte Carlo estimators to approximate the score function at any state zx\tau .
Second, it is easy to parallelize the solution process of the reverse SDE on a large num-
ber of GPUs. In our previous work [28], we implemented a parallel-in-time method
to solve the reverse process of the unconditional version of our diffusion model, but
the parallelization approach can be easily extended to the conditional setting.

3.3. Supervised learning of the generative model using labeled data. In
this section, we describe how to leverage the score function estimated in section 3.2 to
generate labeled data for the target stochastic flow map F\Delta t(x,\omega ) in (2.3) such that
we can train the desired generator G\theta in (2.4) using supervised learning. We observe
that the flow map G\theta (x, z) is a deterministic map from the terminal state Zx

1 to the
initial state Zx

0 . However, the stochastic nature of the reverse SDE in (3.6) leads to
a random map from Zx

1 to Zx
0 . This means that the reverse SDE cannot be used to

generate labeled data for supervised training of G\theta (x, z). Fortunately, we can convert
the reverse SDE to a reverse ODE using the property that

1The size of the subset is set to 1\% of the total number of samples M .
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A CONDITIONAL DIFFUSION MODEL FOR LEARNING SDEs C1151

\nabla qZx
\tau 
(zx\tau ) = qZx

\tau 
(zx\tau )\nabla log(qZx

\tau 
(zx\tau )) = qZx

\tau 
(zx\tau )S(z

x
\tau , \tau ),(3.20)

which holds true for all differentiable PDFs qZx
\tau 
. Specifically, the PDF qZx

\tau 
(zx\tau ) of the

reverse SDE's state is the solution of a reverse Fokker--Planck equation,

\partial qZx
\tau 
(zx\tau )

\partial \tau 
=\nabla \cdot 

\biggl[ 
(b(\tau )zx\tau  - \sigma 2(\tau )S(zx\tau , \tau ))qZx

\tau 
(zx\tau ) +

\sigma 2(\tau )

2
\nabla qZx

\tau 
(zx\tau )

\biggr] 
,(3.21)

where b(\tau ), \sigma (\tau ), and S(zx\tau , \tau ) are the same as in (3.6). Substituting (3.20) into (3.21),
we can convert the reverse Fokker--Planck equation to a reverse convection equation,
i.e.,

\partial qZx
\tau 
(zx\tau )

\partial \tau 
=\nabla \cdot 

\bigl[ 
g(zx\tau , \tau )qZx

\tau 
(zx\tau )

\bigr] 
,

g(zx\tau , \tau ) = (b(\tau )zx\tau  - \sigma 2(\tau )S(zx\tau , \tau )) +
\sigma 2(\tau )

2
\nabla log(qZx

\tau 
(zx\tau ))

= b(\tau )zx\tau  - \sigma 2(\tau )

2
S(zx\tau , \tau ),

(3.22)

which corresponds to the reverse ODE

dZx
\tau =

\biggl[ 
b(\tau )Zx

\tau  - 1

2
\sigma 2(\tau )S(Zx

\tau , \tau )

\biggr] 
d\tau withZx

1 =Z \sim \scrN (0, Id),(3.23)

whose state has the same distribution as the reverse SDE. In addition, this ODE has
a unique solution and thus provides a smoother function relationship between the
initial state Zx

0 and the terminal state Zx
1 . Therefore, we adopt the ODE in (3.23) to

generate labeled data for supervised learning of the flow map F\Delta t(x,\omega ) in (2.3). The
equivalence of marginal distributions can be rigorously established through martingale
problem theory [11, 25, 34]. In this work, we use the simple Euler scheme to solve the
reverse ODE, i.e.,

zx\tau k - 1
= zx\tau k  - 

\biggl[ 
b(\tau k)z

x
\tau k

 - 1

2
\sigma 2(\tau k)S(z

x
\tau k
, \tau k)

\biggr] 
\Delta \tau , k=K, . . . ,1,(3.24)

where \Delta \tau = 1/K and \tau k = k\Delta \tau for k= 0, . . . ,K. We denote the labeled data by

\scrD label :=
\bigl\{ 
(xj , zj , yj)

\bigm| \bigm| xj \in \scrD obs and zj \sim \scrN (0, Id), j = 1, . . . , J
\bigr\} 
,(3.25)

where J \leq M is the size of the labeled dataset, xj is a sample from \{ xm\} Mm=1 \subset \scrD obs, zj
is a sample from the standard normal distribution \scrN (0, Id), and yj is the generated
labeled data by solving the reverse ODE using the training-free score estimator in
section 3.2. For j = 1, . . . , J , we solve the reverse ODE from \tau = 1 to \tau = 0 by setting
x = xj and z

xj

1 = zj in (3.23). After solving the ODE, we collect the state z
xj

0 and
let yj = z

xj

0 . Once the entire labeled dataset \scrD label is generated, we train a fully
connected neural network G\theta (x, z) to approximate the flow map F\Delta t(x,\omega ) in (2.3)
using the standard mean squared error (MSE) loss. The workflow of the proposed
method is summarized in Algorithm 3.1.

4. Numerical experiments. In this section, we present several numerical ex-
amples to demonstrate the accuracy and efficiency of the proposed training-free diffu-
sion model for learning the flow map of stochastic dynamical systems. The examples
include the following:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/0

4/
25

 to
 1

04
.2

05
.1

77
.2

33
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



C1152 Y. LIU, Y. CHEN, D. XIU, AND G. ZHANG

Algorithm 3.1. The training-free conditional diffusion model.

Input: Observation dataset \scrD obs = \{ (xm,\Delta xm)\} Mm=1

Procedure:
for j = 1,2, . . . , J do  \triangleleft Generating labeled data

Random select a sample xj from \{ xm\} Mm=1 \subset \scrD obs;
Generate a sample zj from \scrN (0, Id), and set z

xj
\tau K = zj in (3.24);

for k=K, . . . ,1 do
Compute the weight \{ \widehat wMC(z

xj
\tau k , z

xm
0 )\} Mm=1 using (3.19);

Compute the score function \widehat SMC(z
xj
\tau k , \tau k) using (3.18);

Solve z
xj
\tau k - 1 using the Euler scheme in (3.24)

end for
Set yj = z

xj
\tau 0 , and assemble (xj , zj , yj)

end for
Train G\theta (x, z) using the labeled data \scrD label = \{ (xj , zj , yj)\} Jj=1;
Output: The trained generative model G\theta (x, z).

\bullet linear SDEs: Ornstein--Uhlenbeck (OU) process and geometric Brownian mo-
tion;

\bullet nonlinear SDEs: SDEs with exponential and trigonometric drift or diffusion
as well as SDEs featuring a double-well potential;

\bullet SDEs with non-Gaussian noise of exponential and lognormal distributions;
\bullet multidimensional SDEs: two-dimensional and five-dimensional OU processes.

Remark 4.1 (reproducibility). Our method is implemented using PyTorch with
GPU acceleration. The source code has been made publicly accessible at
https://github.com/YanfangLiu11/Conditional-Diffusion-Model-for-SDE-Learning.
All numerical results presented in this section are fully reproducible using the provided
GitHub repository.

Training dataset \bfscrD obs generation: For each example, we generate H tra-
jectories by solving the exact SDEs using the Euler--Maruyama method, with initial
conditions uniformly distributed within specified regions. These trajectories are then
reorganized as data pairs \{ (xm,\Delta xm)\} as described in section 2 to form observation
dataset \scrD obs. The time step in the Euler--Maruyama method is set to \Delta t = 0.01 up
to T = 1.0 for all examples (except for geometric Brownian motion with T = 0.5).
Then each trajectory will contribute L= 100 (for geometric Brownian motion L= 50)
samples to \scrD obs. Accordingly, the size of observation data for each example is equal to
M =H \times L, as shown in (2.8). For the training-free diffusion model, the reverse-time
ODE in (3.23) is solved using the explicit Euler scheme with 10,000 time steps, i.e.,
K = 10,000 in (3.24). Each ODE solution generates a labeled data (xj , zj , yj) for
the labeled dataset \scrD label. This labeled dataset \scrD label is then divided into training
and validation sets, with 80\% of the data for training and the remaining 20\% for
validation.

Supervised training of \bfitG \bfittheta (\bfitx , \bfitz ): We define the generative model G\theta (x, z) as
a fully connected feed-forward neural network with one hidden layer to learn the flow
map F\Delta t(x,\omega ) in (2.3). Because we have labeled data \scrD label, we use the standard MSE
loss to train the generative model G\theta (x, z). For each example, the neural network is
trained for 2,000 epochs using the Adam optimizer with a learning rate of 0.01. During
the training period, the best neural network parameters are saved based on validation
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A CONDITIONAL DIFFUSION MODEL FOR LEARNING SDEs C1153

performance to ensure optimal training loss. Since the neural network structure is
simple, we use the simple grid search method to tune the number of neurons in the
hidden layer.

Metrics for testing the generative model \bfitG \bfittheta (\bfitx , \bfitz ): The trained conditional
generative model G\theta (x, z) is applied to predict each target SDE system for a time
horizon typically up to T = 5 \sim 500, which is a much longer time horizon than the
time horizon covered by the observation data \scrD obs, where the time horizon is T = 1
or 0.5. For all the numerical examples, we simulate 500,000 trajectories using both
the approximate flow map and the ground truth flow map. The prediction is then
compared with the ground truth solution using the following metrics:

\bullet the mean and standard deviation of the simulated trajectories for visual com-
parison of the accuracy;

\bullet comparison of the approximate drift and diffusion coefficients, obtained from
simulated trajectories, against the true drift and diffusion coefficients;

\bullet comparison of the approximate flow map G\theta to the ground truth flow map
F\Delta t.

4.1. Linear SDEs. We first consider the learning of an OU process and a geo-
metric Brownian motion.

4.1.1. One-dimensional OU process. The one-dimensional OU process under
consideration is defined by

dXt = \theta (\mu  - Xt)dt+ \sigma dWt,(4.1)

where \theta = 1.0, \mu = 1.2, and \sigma = 0.3. The observation dataset \scrD obs consists of M =
1,500K data pairs from H = 15,000 trajectories, obtained by solving the SDE in (4.1)
with initial values uniformly sampled from \scrU (0,2.5) up to the time horizon T = 1.0.
We randomly choose 50,000 initial states from \scrD obs to generate the corresponding
labeled training data. After training the generative model G\theta , we simulate 500,000
prediction trajectories for the time horizon up to T = 5.0.

The mean and standard deviation of the predicted solutions when X0 = 1.5 by
the generative model, compared with those of the exact solutions, are displayed in
Figure 1. Good agreements between the mean and standard deviation of the predicted
solutions and those of the exact solution can be observed for time up to T = 5.0 despite

Fig. 1. One-dimensional OU process. Comparison of the mean and standard deviation of so-
lutions with the initial state being X0 = 1.5, obtained by the generative model and the ground truth.
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C1154 Y. LIU, Y. CHEN, D. XIU, AND G. ZHANG

Fig. 2. One-dimensional OU process. Comparison of effective drift and diffusion functions
obtained by the simulated trajectories using the generative model and the exact SDE. Left: drift
a(x) = \mu  - x. Right: diffusion b(x) = \sigma .

Fig. 3. One-dimensional OU process. Comparison of conditional PDF pXt+\Delta t| Xt
(xt+\Delta t| xt =

1.5) determined by the generative model G\theta and the exact flow map F\Delta t.

the training dataset being limited to T = 1.0. In Figure 2, we present the effective
drift and diffusion determined by the generative model, which are closely aligned with
the true drift and diffusion. The relative errors for drift and diffusion functions are on
the order of 10 - 2 and 10 - 3, respectively. Figure 3 illustrates the one-step conditional
distribution pXt+\Delta t| Xt

(xt+\Delta t| xt = 1.5) determined by the generative model G\theta and the
exact flow map F\Delta t. The predicted conditional distribution accurately approximates
the exact one.

4.1.2. Geometric Brownian motion. The one-dimensional geometric Brown-
ian motion is defined by

dXt = \mu Xtdt+ \sigma XtdWt,(4.2)

where \mu = 2 and \sigma = 1. The observation dataset \scrD obs consists of M = 5,000K data
pairs from H = 100,000 trajectories of the SDE, obtained by solving the SDE in (4.2)
with initial values uniformly sampled from \scrU (0,2) up to T = 0.5. We randomly choose
120,000 initial states from the samples in \scrD obs to generate the corresponding labeled
training data. After training the generative model G\theta , the prediction trajectories are
simulated over a time horizon up to T = 1.0.

The mean and standard deviation of the predicted solutions for X0 = 0.5 by
the generative model, compared with those of the exact solutions, are displayed in

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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A CONDITIONAL DIFFUSION MODEL FOR LEARNING SDEs C1155

Fig. 4. One-dimensional geometric Brownian motion. Comparison of the mean and standard
deviation of solutions with the initial state being X0 = 0.5, obtained by the generative model and the
ground truth.

Fig. 5. One-dimensional geometric Brownian motion. Comparison of effective drift and diffu-
sion functions obtained by the simulated trajectories using the generative model and the exact SDE.
Left: drift a(x) = \mu x. Right: diffusion b(x) = \sigma x.

Figure 4. Good agreements between the mean and standard deviation of the predicted
solutions and those of the exact solution can be observed for time up to T = 1.0 despite
the training dataset being limited to T = 0.5. In Figure 5, we present the effective
drift and diffusion determined by the generative model, which are closely aligned
with the true drift and diffusion. The relative errors for drift and diffusion functions
are on the order of 10 - 2. Figure 6 illustrates the one-step conditional distribution
pXt+\Delta t| Xt

(xt+\Delta t| xt = 5.0) for both the generative model and the exact SDE. The
predicted conditional distribution accurately approximates the exact one.

4.2. Nonlinear SDEs. This section considers two SDEs with exponential and
trigonometric drift or diffusion functions as well as SDEs featuring a double-well
potential.

4.2.1. SDE with nonlinear diffusion. The SDE with a nonlinear diffusion is
defined by

dXt = - \mu Xtdt+ \sigma e - X2
t dWt,(4.3)

where \mu = 5 and \sigma = 0.5. The observation dataset \scrD obs consists ofM = 15,000K data
pairs from H = 150,000 trajectories, obtained by solving the SDE (4.3) with initial
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C1156 Y. LIU, Y. CHEN, D. XIU, AND G. ZHANG

Fig. 6. One-dimensional geometric Brownian motion. Comparison of conditional PDF
pXt+\Delta t| Xt

(xt+\Delta t| xt = 5.0) determined by the generative model G\theta and the exact flow map F\Delta t.

Fig. 7. SDE with nonlinear diffusion. Comparison of the mean and tandard deviation of so-
lutions with the initial state being X0 =  - 0.4, obtained by the generative model and the ground
truth.

values uniformly sampled from \scrU ( - 1,1) up to T = 1.0. We randomly choose 60,000
initial states from \scrD obs to generate the corresponding labeled training data. After
training the generative model G\theta , we simulate 500,000 prediction trajectories up to
T = 10.0.

The mean and standard deviation of the predicted solutions for X0 =  - 0.4 by
the generative model, compared with those of the exact solutions, are displayed in
Figure 7. Good agreements between the mean and standard deviation of the predicted
solutions and those of the exact solution can be observed for time up to T = 10.0
despite the training dataset being limited to T = 1.0. In Figure 8, we present the
effective drift and diffusion determined by the generative model, which are closely
aligned with the true drift and diffusion coefficients. The relative errors for drift
and diffusion functions are on the order of 10 - 3. Figure 9 illustrates the one-step
conditional distribution pXt+\Delta t| Xt

(xt+\Delta t| xt =  - 0.3) for both the generative model
and the exact SDE. The predicted conditional distribution accurately approximates
the exact one.
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A CONDITIONAL DIFFUSION MODEL FOR LEARNING SDEs C1157

Fig. 8. SDE with nonlinear diffusion. Comparison of effective drift and diffusion functions
obtained by the simulated trajectories using the generative model and the exact SDE. Left: drift

a(x) = - \mu x. Right: diffusion b(x) = \sigma e - x2
.

Fig. 9. SDE with nonlinear diffusion. Comparison of conditional PDF pXt+\Delta t| Xt
(xt+\Delta t| xt =

 - 0.3) determined by the generative model G\theta and the exact flow map F\Delta t.

4.2.2. Trigonometric SDE. The SDE with trigonometric drift and diffusion is
defined by

dXt = sin(2k\pi Xt)dt+ \sigma cos(2k\pi Xt)dWt,(4.4)

where k = 1 and \sigma = 0.5. The observation dataset \scrD obs consists of M = 20,000K
data pairs from H = 200,000 trajectories, obtained by solving the SDE in (4.4) with
initial values uniformly sampled from \scrU (0.35,0.7) up to T = 1.0. We randomly choose
60,000 initial states from \scrD obs to generate the corresponding labeled training data.
After training the generative model G\theta , we simulate 500,000 prediction trajectories
up to T = 10.0.

The mean and standard deviation of the predicted solutions for X0 = 0.6 by the
generative model, compared with those of the exact solutions, are displayed in Fig-
ure 10. Good agreements between the mean and standard deviation of the predicted
solutions and those of the exact solution can be observed for time up to T = 10.0
despite the training dataset being limited to T = 1.0. In Figure 11, we present the
effective drift and diffusion determined by the generative model, which are closely
aligned with the true drift and diffusion. The relative errors for drift and diffusion
functions are on the order of 10 - 2 and 10 - 3, respectively. Figure 12 illustrates the one-
step conditional distribution pXt+\Delta t| Xt

(xt+\Delta t| xt = 0.5) for both the generative model
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Fig. 10. Trigonometric SDE. Comparison of the mean and standard deviation of solutions with
the initial state being X0 = 0.6, obtained by the generative model and the ground truth.

Fig. 11. Trigonometric SDE. Comparison of effective drift and diffusion functions obtained
by the simulated trajectories using the generative model and the exact SDE. Left: drift a(x) =
sin(2k\pi x). Right: diffusion b(x) = \sigma cos(2k\pi x).

Fig. 12. Trigonometric SDE. Comparison of conditional PDF pXt+\Delta t| Xt
(xt+\Delta t| xt = 0.5) de-

termined by the generative model G\theta and the exact flow map F\Delta t.

and the exact SDE. The predicted conditional distribution accurately approximates
the exact one.

4.2.3. SDE with double-well potential. The SDE with a double-well poten-
tial is defined by
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A CONDITIONAL DIFFUSION MODEL FOR LEARNING SDEs C1159

Fig. 13. SDE with a double-well potential. Solution trajectory for time up to T = 500 when
X0 = 1.5.

Fig. 14. SDE with a double-well potential. Comparison of effective drift and diffusion functions
obtained by the simulated trajectories using the generative model and the exact SDE. Left: drift
a(x) = x - x3. Right: diffusion b(x) = \sigma .

dXt = (Xt  - X3
t )dt+ \sigma dWt,(4.5)

where \sigma = 0.5. There are two stable states at x=\pm 1, and the system can randomly
transition between these two stable states over time. The observation dataset \scrD obs

consists of M = 10,000K data pairs from H = 100,000 trajectories, obtained by
solving the SDE in (4.5) with initial values uniformly sampled from \scrU ( - 2.5,2.5) up
to T = 1.0. We randomly choose 60,000 initial states from \scrD obs to generate the
corresponding labeled training data. After training the generative model G\theta , we
simulate 500,000 prediction trajectories up to T = 500.

A predicted solution at X0 = 1.5 for time up to T = 500 by the generative model
is displayed in Figure 13. Despite the training dataset being limited to T = 1.0, where
transitions between the two stable states are not observed, the generative model is
able to predict the transitions over longer time periods. In Figure 14, we present the
effective drift and diffusion determined by the generative model, which are closely
aligned with the true drift and diffusion. The relative errors for drift and diffusion
functions are on the order of 10 - 2 and 10 - 3, respectively. Figure 15 illustrates the one-
step conditional distribution pXt+\Delta t| Xt

(xt+\Delta t| xt = 1.5) for both the generative model
and the exact SDE. The predicted conditional distribution accurately approximates
the exact one.

4.3. SDEs with non-Gaussian noise. This section considers the learning of
SDEs driven by a non-Gaussian stochastic process.
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C1160 Y. LIU, Y. CHEN, D. XIU, AND G. ZHANG

Fig. 15. SDE with a double-well potential. Temporal evolution of the solution probability dis-
tribution when X0 = 1.5 at time T = 0.5, 10, 30, and 100 (from left to right).

Fig. 16. SDE with exponentially distributed noise. Left: comparison of mean and stan-
dard deviation of solutions with x0 = 0.34. Right: comparison of conditional distribution
pXt+\Delta t| Xt

(xt+\Delta t| xt = 0.34).

4.3.1. Noise with exponential distribution. The SDE with exponentially
distributed noise is defined by

dXt = \mu Xtdt+ \sigma 
\surd 
dt\eta t, \eta t \sim exp(1),(4.6)

where \eta t has an exponential PDF f\eta (x) = e - x, x \geq 0, \mu =  - 2.0, and \sigma = 0.1.
The observation dataset \scrD obs consists of M = 15,000K data pairs from H = 150,000
trajectories, obtained by solving the SDE in (4.6) with initial values uniformly sampled
from \scrU (0.2,0.9) up to T = 1.0. We randomly choose 60,000 initial states from \scrD obs to
generate the corresponding labeled training data. After training the generative model
G\theta , we simulate 500,000 prediction trajectories up to T = 5.0.

The mean and standard deviation of the predicted solutions for X0 = 0.34 by
the generative model, compared with those of the exact solutions, are shown on the
left side of Figure 16. The right side of Figure 16 illustrates the one-step conditional
distribution pXt+\Delta t| Xt

(xt+\Delta t| xt = 0.34) for both the generative model and the exact
SDE. The predicted conditional distribution accurately approximates the exact one.
Good agreements between the mean and standard deviation of the predicted solutions
and those of the exact solution can be observed for time up to T = 5.0 despite the
training dataset being limited to T = 1.0. The exact effective drift and diffusion
functions are

a(x) =\BbbE 
\biggl( 
Xt+\Delta t  - Xt

\Delta t

\bigm| \bigm| \bigm| \bigm| Xt = x

\biggr) 
= \mu x+

\sigma \surd 
\Delta t

,

b(x) = Std

\biggl( 
Xt+\Delta t  - Xt\surd 

\Delta t

\bigm| \bigm| \bigm| \bigm| Xt = x

\biggr) 
= \sigma .

(4.7)

The corresponding effective drift and diffusion by the generative model G\theta (x, z) can
be given by
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A CONDITIONAL DIFFUSION MODEL FOR LEARNING SDEs C1161

Fig. 17. SDE with exponentially distributed noise. Comparison of effective drift and diffusion
functions obtained by the simulated trajectories using the generative model and the exact SDE. Left:
drift a(x) = \mu x+ \sigma /

\surd 
\Delta t. Right: diffusion b(x) = \sigma .

\^a(x) =\BbbE z

\biggl( 
G\theta (x, z)

\Delta t

\biggr) 
, \^b(x) = Stdz

\biggl( 
G\theta (x, z)\surd 

\Delta t

\biggr) 
.(4.8)

In Figure 17, we present the effective drift and diffusion determined by the generative
model, which are closely aligned with the true drift and diffusion. The relative errors
for drift and diffusion functions are on the order of 10 - 2 and 10 - 3, respectively.

4.3.2. Noise with lognormal distribution. The SDE with lognormal noise
is defined by

d logXt = (logm - \theta logXt)dt+ \sigma dWt,(4.9)

where m = 1/
\surd 
e, \theta = 1.0, and \sigma = 0.3. The observation dataset \scrD obs consists of

M = 20,000K data pairs from H = 200,000 trajectories, obtained by using the Euler--
Maruyama method with the scheme

Xt+\Delta t =m\Delta tX1 - \theta \Delta t
t \eta \sigma 

\surd 
\Delta t

t , \eta t \sim lognormal(0,1),(4.10)

starting from initial values that follow \scrU (0.1,2.0) up to T = 1.0. We randomly choose
60,000 initial states from \scrD obs to generate the corresponding labeled training data.
After training the generative model G\theta , we simulate 500,000 prediction trajectories
up to T = 5.0.

The mean and standard deviation of the predicted solutions for X0 = 0.4 by the
generative model, compared with those of the exact solutions, are displayed on the
left side of Figure 18. The right side of Figure 18 illustrates the one-step conditional
distribution pXt+\Delta t| Xt

(xt+\Delta t| xt = 0.4) for both the generative model and the exact
SDE. The predicted conditional distribution accurately approximates the exact one.
Good agreements between the mean and standard deviation of the predicted solutions
and those of the exact solution can be observed for time up to T = 5.0 despite the
training dataset being limited to T = 1.0.

The SDE is rewritten in the form of the classical SDE, and its effective drift and
diffusion functions are

a(x) = ln

\left[  \Biggl( \BbbE \Biggl( Xt+\Delta t

Xt

\bigm| \bigm| \bigm| \bigm| \bigm| Xt = x

\Biggr) \Biggr) 1/\Delta t
\right]  = ln

\bigl( 
mx - \theta 

\bigr) 
+
\sigma 2

2
,

b(x) = Std (Xt+\Delta t| Xt = x) =
\sqrt{} 
e\sigma 2\Delta t  - 1

\Bigl( 
me\sigma 

2/2
\Bigr) \Delta t

x1 - \theta \Delta t.

(4.11)
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C1162 Y. LIU, Y. CHEN, D. XIU, AND G. ZHANG

Fig. 18. SDE with lognormal noise. Left: comparison of mean and standard deviation of solu-
tions with x0 = 0.4. Right: comparison of conditional distribution pXt+\Delta t| Xt

(xt+\Delta t| xt = 0.4).

Fig. 19. SDE with lognormal noise. Comparison of effective drift and diffusion functions ob-
tained by the simulated trajectories using the generative model and the exact SDE. Left: drift
a(x). Right: diffusion b(x). (See (4.11) for the exact drift and diffusion functions and (4.12) for the
learned ones.)

The corresponding effective drift and diffusion by the generative model G\theta (x, z) can
be given by

\^a(x) = ln

\Biggl[ \biggl( 
\BbbE z

\biggl( 
G\theta (x, z) + x

x

\biggr) \biggr) 1/\Delta t
\Biggr] 
, \^b(x) = Stdz (G\theta (x, z)) .(4.12)

In Figure 19, we present the effective drift and diffusion determined by the generative
model, which are closely aligned with the true drift and diffusion. The relative errors
for drift and diffusion functions are on the order of 10 - 3.

4.4. Multidimensional examples. In this section, we consider the learning of
multidimensional SDE systems.

4.4.1. Two-dimensional OU process. The first example is the two-
dimensional OU process

dXt =BXtdt+\Sigma dWt,(4.13)

where Xt = (x1, x2) \in \BbbR 2 are the state variables and B and \Sigma are the following 2\times 2
matrices:

B =

\biggl( 
 - 1  - 0.5
 - 1  - 1

\biggr) 
, \Sigma =

\biggl( 
1 0
0 0.5

\biggr) 
.(4.14)
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A CONDITIONAL DIFFUSION MODEL FOR LEARNING SDEs C1163

Fig. 20. Two-dimensional OU. Comparison of mean and standard deviation of solutions with
X0 = (0.3,0.4).

Fig. 21. Two-dimensional OU. Left: comparison of conditional PDF pXt+\Delta t| Xt
(xt+\Delta t| xt =

(0,0)) determined by the generative model G\theta and the exact flow map F\Delta t. Left: learned. Right:
reference.

The observation dataset \scrD obs consists of M = 35,000K data pairs from H =
350,000 trajectories, obtained by solving the SDE in (4.13) under (4.14) with initial
values uniformly sampled from ( - 4,4)\times ( - 3,3) up to T = 1.0. We randomly choose
120,000 initial states from \scrD obs to generate the corresponding labeled training data.
After training the generative model G\theta , we simulate 500,000 prediction trajectories
up to T = 5.0.

The mean and standard deviation of the predicted solutions for X0 = (0.3,0.4)
by the generative model, compared with those of the exact solutions, are displayed
in Figure 20. Figure 21 illustrates the one-step conditional probability distribution
pXt+\Delta t| Xt

(xt+\Delta t| xt = (0,0)) for both the generative model and the exact SDE. The
predicted conditional distribution accurately approximates the exact one. Good agree-
ments between the mean and standard deviation of the predicted solutions and those
of the exact solution can be observed for time up to T = 5.0 despite the training
dataset being limited to T = 1.0.

4.4.2. Two-dimensional stochastic oscillator. The second example is the
stochastic oscillator with

B =

\biggl( 
0 1
 - 1 0

\biggr) 
, \Sigma =

\biggl( 
0 0
0 0.1

\biggr) 
(4.15)
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C1164 Y. LIU, Y. CHEN, D. XIU, AND G. ZHANG

Fig. 22. Two-dimensional stochastic oscillator. Comparison of mean and standard deviation
of solutions at X0 = (0.3,0.4). Left: x1. Right: x2.

Fig. 23. Two-dimensional stochastic oscillator. Comparison of marginal probability distribu-
tion at X0 = ( - 0.5, - 0.5). Left: x1. Right: x2.

in (4.13). The observation dataset \scrD obs consists of M = 300,000K data pairs from
H = 3,000,000 trajectories, obtained by solving the SDE in (4.13) under (4.15) with
initial values uniformly sampled from ( - 1.5,1.5) \times ( - 1.5,1.5) up to T = 1.0. We
randomly choose 50,000 initial states from \scrD obs to generate the corresponding labeled
training data. After training the generative model G\theta , we simulate 500,000 prediction
trajectories up to T = 6.5.

The mean and standard deviation of the predicted solutions for X0 = (0.3,0.4)
by the generative model, compared with those of the exact solutions, are displayed
in Figure 22. Figure 23 illustrates the one-step conditional probability distribution
pXt+\Delta t| Xt

(xt+\Delta t| xt = ( - 0.5, - 0.5)) for both the generative model and the exact SDE.
The predicted conditional distribution accurately approximates the exact one. Good
agreements between the mean and standard deviation of the predicted solutions and
those of the exact solution can be observed for time up to T = 6.5 despite the training
dataset being limited to T = 1.0.

4.4.3. Five-dimensional OU process. This example is the five-dimensional
OU process, driven by Wiener processes of varying dimensions,

dXt =BXtdt+\Sigma dWt,(4.16)

where Xt = (x1, . . . , x5) \in \BbbR 5 are the state variables and B and \Sigma are the following
5\times 5 matrices. The matrix B is defined as follows:
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A CONDITIONAL DIFFUSION MODEL FOR LEARNING SDEs C1165

B =

\left(      
0.2 1.0 0.2 0.4 0.2
 - 1.0 0.0 0.2 0.8  - 1.0
0.2 0.2  - 0.8  - 1.2 0.2
 - 0.6 0.0 1.2  - 0.2 0.6
0.2 0.2 0.6 0.4 0.0

\right)      .(4.17)

We consider the following five different scenarios for \Sigma , which has rank varying
from 1 to 5. The matrices for \Sigma are

\Sigma 1 =diag(0,0,1,0,0),

\Sigma 2 =diag(0,0.8,0,0, - 0.8), \Sigma 3 =

\left(      
0.8 0.2 0.0 0.0 0.0
 - 0.4 0.6 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.7 0.0
0.0 0.0 0.0 0.0 0.0

\right)      ,

\Sigma 4 =

\left(      
0.7 0.0  - 0.4 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.1 0.0 0.6 0.2  - 0.1
0.0 0.0 0.1  - 0.6 0.2
0.0 0.0 0.0 0.3 0.8

\right)      , \Sigma 5 =

\left(      
0.8 0.2 0.1  - 0.3 0.1
 - 0.3 0.6 0.1 0.0  - 0.1
0.2  - 0.1 0.9 0.1 0.2
0.1 0.1  - 0.2 0.7 0.0
 - 0.1 0.1 0.1  - 0.1 0.5

\right)      .

The observation dataset \scrD obs consists of M = 300,000K data pairs from H =
3,000,000 trajectories, obtained by solving the SDE in (4.16) with initial values uni-
formly sampled from the hypercube ( - 1.0,1.0)5 up to T = 1.0. We randomly choose
50,000 initial states from \scrD obs to generate the corresponding labeled training data.
After training the generative model G\theta , we simulate 500,000 prediction trajectories
up to T = 5.0.

The mean and standard deviation of the predicted solutions for initial value X0 =
(0.3, - 0.2,  - 0.7,0.5,0.6) by the generative model, compared with those of the exact
solutions, are displayed in Figure 24. Figure 25 illustrates the one-step conditional
distribution pXt+\Delta t| Xt

(xt+\Delta t| xt = X0) for both the generative model and the exact
SDE. The predicted conditional distribution accurately approximates the exact one.
Good agreements between the mean and standard deviation of the predicted solutions
and those of the exact solution can be observed for time up to T = 6.5 despite the
training dataset being limited to T = 1.0.

4.5. Comparison with baseline methods. In this section, we compare the
numerical performance of the proposed method with the baseline: the GANs model
proposed in [8]. The following metrics are considered for comparison of model
accuracy:

\bullet (relative) error of (one-dimensional) effective drift function: Ea = \| a(x)  - 
\^a(x)\| /\| a(x)\| ;

\bullet (relative) error of (one-dimensional) effective diffusion function: Eb = \| b(x) - 
\^b(x)\| /\| b(x)\| ;

\bullet error of the predictive mean at termination time: Em
T = \| \BbbE (xT ) - \BbbE (\^xT )\| ;

\bullet error of the predictive Standard deviation at termination time: Es
T =

\| STD(xT ) - STD(\^xT )\| .
The comparison results are summarized in Tables 1 and 2. In these tables, we

highlight the better results. We observe that for all four metrics, our method outper-
forms the baseline in most examples.

It is also worth noting that our method is more efficient than GANs in terms
of training cost. Table 3 displays the training and evaluation times (in seconds) for
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C1166 Y. LIU, Y. CHEN, D. XIU, AND G. ZHANG

Fig. 24. Five-dimensional OU process. Comparison of mean and standard deviation of solu-
tions at X0 = (0.3, - 0.2,  - 0.7,0.5,0.6). Left to right: x1, x2, . . . , x5. Top to bottom: \Sigma 1,\Sigma 2, . . . ,\Sigma 5.

Fig. 25. Five-dimensional OU process. Comparison of marginal probability distribution atX0 =
(0.3, - 0.2,  - 0.7,0.5,0.6). Left to right: x1, x2, . . . , x5. Top to bottom: \Sigma 1,\Sigma 2, . . . ,\Sigma 5.
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A CONDITIONAL DIFFUSION MODEL FOR LEARNING SDEs C1167

Table 1
Comparison of effective drift and diffusion functions estimation for GANs and our method.

Example \bfitE \bfita of GANs \bfitE \bfita of our method \bfitE \bfitb of GANs \bfitE \bfitb of our
method

OU process 3.7615E-02 2.0264E-02 3.4912E-03 2.5218E-03

Geometric Brownian motion 3.8360E-02 1.3084E-02 3.0818E-02 2.1089E-02

Exponential diffusion SDE 2.9407E-02 2.0723E-03 1.4196E-02 9.5213E-03
Trigonometric SDE 3.8318E-02 2.4540E-02 3.8146E-02 3.4354E-03

Double-well potential 5.6902E-02 1.2980E-02 1.8266E-02 2.0697E-03

Exponential noise SDE 2.4217E-02 1.6449E-02 3.5840E-02 4.9811E-03
Lognormal noise SDE 6.7650E-02 9.5213E-03 1.9651E-02 2.0723E-03

Table 2
Comparison of SDE end-time mean and Standard deviation estimation for GANs and our method.

Example \bfitT \bfitE \bfitm 
\bfitT of GANs \bfitE \bfitm 

\bfitT of our

method

\bfitE \bfits 
\bfitT of GANs \bfitE \bfits 

\bfitT of our

method

OU process 4 1.3538E-03 3.6823E-03 7.3188E-04 5.4972E-04
Geometric Brownian motion 1 1.0389E-01 3.1599E-02 2.3274E-01 8.9173E-02

Exponential diffusion SDE 10 4.0665E-03 1.8914E-04 4.3357E-04 7.4537E-04

Trigonometric SDE 10 6.6718E-04 2.8130E-04 1.7917E-03 2.2179E-04
Double-wellpotential 300 1.2037E-01 1.7988E-02 2.5084E-02 2.2183E-03

Exponential noise SDE 5 1.8862E-03 1.1758E-03 4.4275E-04 2.6745E-05
Lognormal noise SDE 5 9.2052E-03 1.8914E-04 3.0957E-03 7.4537E-04

Two-dimensional OU process 5 3.8093E-02 8.8535E-03 2.4988E-02 5.1506E-03

Stochastic oscillator 6.5 1.7828E-02 1.8628E-03 1.1120E-02 3.7311E-04

Table 3
Training and evaluation cost (in seconds) for our method of OU process (one, two, and five

dimensions).

Training Evaluation
Models OU dimensions

Data labeling Training G(\cdot ) 500K samples 1,000K samples

Ours One dimension 204.26 5.14 5.40 10.00
Two dimensions 495.84 5.38 22.25 41.66

Five dimensions 928.83 8.16 44.21 87.09

our method on the OU process example in one, two, and five dimensions with \Sigma 5

settings. The training phase includes generating 50,000 labeled data and training a
neural network to learn the flow map. In the evaluation phase, we show the total
time required to generate 500,000 and 1,000,000 trajectories up to T = 5. The GANs
modeling for stochastic Flow Map suffers from many training difficulties, which are
inherited from vanilla GANs, such as the requirement of a huge number of epochs
(estimated \scrO (105)), a lack of reliable metrics indicating when to terminate, and so on.
In contrast, in our method, the time-consuming step is the generation of labeled data,
which still takes only a few minutes for the one- and two-dimensional cases (204.26
and 495.84 seconds, respectively) and about 15 minutes for the five-dimensional case
(928.83 seconds), all of which are at most \scrO (103). Once the flow map is trained,
generating 500,000 trajectories up to T = 5 takes less than 1 minute in all cases
(e.g., 5.40 seconds for one dimension, 22.25 seconds for two dimensions, and 44.21
seconds for five dimensions).

5. Conclusion. In this paper, we have introduced a novel training-free condi-
tional diffusion model for learning the flow map of stochastic dynamical systems.
Our approach offers a promising alternative to traditional methods for solving SDEs,
addressing key challenges in computational efficiency and accuracy. The proposed
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method leverages the power of score-based diffusion models to generate samples from
complex distributions without the need for extensive training data or computation-
ally intensive solving procedures. By introducing a conditional framework, we have
enabled our model to capture the dynamics of SDEs across a wide range of initial con-
ditions and system parameters. Our numerical experiments, spanning various types
of SDEs including linear, nonlinear, and multidimensional systems, demonstrate the
effectiveness and versatility of our approach. The model shows remarkable accuracy in
predicting both short-term and long-term behaviors of stochastic systems, often out-
performing baseline methods such as GANs in terms of drift and diffusion function
estimation as well as in predicting mean and standard deviation at termination times.

Despite the effectiveness and efficiency of our training-free conditional diffusion
model as demonstrated across various examples, several limitations exist, particularly
in the Monte Carlo estimator, which directly affect the quality of labeled data gener-
ated for training the flow map. First, for extremely high-dimensional systems, the cost
of the Monte Carlo estimator under the analytic form increases dramatically, requir-
ing substantial computational resources, potentially limiting the method's application
to very complex systems. Second, for SDEs with highly complicated or discontinu-
ous drift and diffusion terms, the score function estimation becomes less accurate at
capturing sharp transitions or irregular behaviors. The Monte Carlo estimator may
fail to provide sufficient resolution near discontinuities, leading to suboptimal approx-
imations of the flow map. Third, the score function estimation depends significantly
on the availability and quality of trajectory data; when available data are limited or
sparse in certain regions of the state space, the estimation may struggle to provide
accurate approximations. The estimation of score function directly affects the quality
of labeled data generated for training the flow map. Obtaining an accurate estimation
of the score function is therefore critical to the success of our method.

While our proposed method has shown promising results, there are several av-
enues for future research that could further enhance its capabilities and applications.
First, extending the model to handle more complex stochastic processes, such as jump
diffusions or fractional Brownian motion, could broaden its applicability in fields such
as finance and environmental science. Second, investigating the theoretical proper-
ties of the proposed score estimation technique, including convergence rates and error
bounds, would provide a stronger mathematical foundation for the method. Third,
exploring the integration of this approach with other machine learning techniques,
such as transfer learning or meta-learning, could potentially improve its performance
on new, unseen stochastic systems. Fourth, applying this method to real-world prob-
lems in areas such as climate modeling, epidemiology, or quantum systems could
demonstrate its practical value and potentially lead to new insights in these fields.
Finally, optimizing the computational efficiency of the algorithm, particularly for
high-dimensional systems, remains an important area for future work. This could in-
volve developing advanced parallelization strategies or leveraging specialized hardware
accelerators to further reduce computation time.

Reproducibility of computational results. This paper has been awarded
the ``SIAM Reproducibility Badge: Code and data available"" as a recognition that
the authors have followed reproducibility principles valued by SISC and the scientific
computing community. Code and data that allow readers to reproduce the results in
this paper are available at https://github.com/YanfangLiu11/Conditional-Diffusion-
Model-for-SDE-Learning and in the supplementary materials (Conditional-Diffusion-
Model-for-SDE-Learning-main.zip [local/web 235KB]).
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