
Journal of Machine Learning for Modeling and Computing, 6(2):29–42 (2025)

CHEBYSHEV FEATURE NEURAL NETWORK
FOR ACCURATE FUNCTION
APPROXIMATION

Zhongshu Xu, Yuan Chen,∗ & Dongbin Xiu
Department of Mathematics, The Ohio State University, Columbus, Ohio 43210,
USA

*Address all correspondence to: Yuan Chen, Department of Mathematics, The Ohio State
University, Columbus, Ohio 43210, USA, E-mail: chen.11050@osu.edu

We present a new deep neural network (DNN) architecture capable of approximating functions up
to machine accuracy. Termed the Chebyshev feature neural network (CFNN), the new structure
employs Chebyshev functions with learnable frequencies as the first hidden layer, followed by the
standard fully connected hidden layers. The learnable frequencies of the Chebyshev layer are initial-
ized with exponential distributions to cover a wide range of frequencies. Combined with a multistage
training strategy, we demonstrate that this CFNN structure can achieve machine accuracy during
training. A comprehensive set of numerical examples for dimensions up to 20 are provided to demon-
strate the effectiveness and scalability of the method.

KEY WORDS: deep neural networks, function approximation, Chebyshev function

1. INTRODUCTION

In recent years, machine learning has become a prominent research area. It has been widely
applied in computer vision (Voulodimos et al., 2018), data analysis (James et al., 2013), natu-
ral language processing (Chowdhary, 2020), and recommendation systems (Pazzani and Billsus,
2007). In particular, deep neural networks (DNNs) are frequently used in machine learning al-
gorithms. Recently, in the area of scientific computing, DNN-based methods have been widely
developed for, for example, solving differential equations (Raissi et al., 2019; Sirignano and
Spiliopoulos, 2018; Yu et al., 2018), inverse problems (Jin et al., 2017; Li et al., 2020a, 2019),
operator learning (Brunton et al., 2016; Li et al., 2020b; Lu et al., 2021; Qin et al., 2019), etc.
In those problems, high-precision function approximations are an intrinsic requirement for the
application of DNNs.

The mathematical foundation of DNNs rests on the celebrated universal approximation the-
orem (Hornik et al., 1989), which states that DNNs are capable of approximating functions with
arbitrary precision. However, it is well known that the practical accuracy of DNNs is lacking
for many scientific computing problems. For example, the training accuracy of DNNs can often
reach a plateau level ofO(10−5) to O(10−2). While this may be adequate for imaging analy-
sis and classification problems, it is insufficient for many scientific computing problems, where
high precision is critical for long-term predictions. Efforts have been made to partially under-
stand this, see, for example, the so-called spectral bias phenomenon (Fanaskov and Oseledets,
2023; Rahaman et al., 2019) or frequency principle (Xu et al., 2019), although it is unclear
when a complete understanding will be available. Practical algorithms have also been designed

Submitted: 9/27/24; Accepted: 12/18/24; Online: 1/7/25
https://dl.begellhouse.com/doi/10.1615/JMachLearnModelComput.2025056536
2689–3967/25/$35.00 © 2025 by Begell House, Inc. www.begellhouse.com

29

30 Xu, Chen, & Xiu

to enhance DNNs accuracy, see, for example, Fourier features networks (Tancik et al., 2020),
multistage training (Wang and Lai, 2024), and Hat activation functions (Hong et al., 2022).

In this paper, we present the Chebyshev feature neural network (CFNN) architecture and
its training procedure to achieve arbitrary training accuracy, down to machine precision, should
one desire. Our work is inspired by the original work of Wang and Lai (2024), which employed
Fourier feature network and multistage training to reach machine precision during training. The
contribution of our work lies in the following aspects: (1) the use of Chebyshev features with
learnable frequencies in the first hidden layer. This takes advantage of the superior function ap-
proximation properties offered by Chebyshev functions and also contains fewer hyperparameters
than the Fourier features network; (2) a random sampling strategy using exponential distribution
for the initialization of the Chebyshev frequency in each stage of the multistage training. This
alleviates the difficulty of choosing the frequency parameters in Wang and Lai (2024); and (3)
a systematical study of the method for a large class of functions. Through extensive numerical
study, we demonstrate that CFNN offers excellent approximation capability, for smooth func-
tions or discontinuous functions, in various dimensions.

2. SETUP

We consider the classical function approximation problem. Letf : Rd 7→ R, d ≥ 1, be an
unknown function. Letf(x1), . . . , f(xN), N ≥ 1, be its samples. We seek to find an approxi-
mationf̂(x) ≈ f(x).

3. CHEBYSHEV FEATURE NEURAL NETWORK

We consider the classical function approximation problem: Letf : D 7→ R, D ⊂ Rd, d ≥ 1,
be an unknown function and letf(x1), . . . , f(xN), N ≥ 1, denote its samples. The objective
is to find an approximation function̂f such thatf̂(x) ≈ f(x), ∀x ∈ D. A common approach
is to seek an approximation from a parameterized family of functionsf̂(·;θ) and determine the
parameterθ by minimizing the discrepancy between the samples. The mean squared error (MSE)
is often used to quantify this discrepancy:

minθ
1
N

N∑

i=1

[
f(xi)− f̂(xi; θ)

]2
. (1)

In this work, we focus on using DNN for function approximation. LetN : Rd 7→ R represent
the DNN-based mapping operator. The DNN approximatesf by

y = N(x; Θ), (2)

whereΘ represents all the network’s parameters (e.g., weights and biases). The values ofΘ are
determined by minimizing the MSE loss in Eq. (1).

3.1 Chebyshev Features

Chebyshev polynomials, a well-known class of orthogonal polynomials, are frequently em-
ployed in function approximation, often achieving near-optimal performance; see, for instance,

Journal of Machine Learning for Modeling and Computing

Chebyshev Feature Neural Network for Accurate Function Approximation 31

Quarteroni et al. (2006), Szego (1939), and Trefethen (2013). Forn ≥ 0, thenth Chebyshev
polynomialTn is defined as

Tn(x) = cos(n arccos(x)), x ∈ [−1, 1].

In this paper, we generalize Chebyshev polynomials by extending their degree from integers
to real numbers. Specifically, we consider

Tα(x) = cos(α arccos(x)), α ∈ R+
0 . (3)

By introducing this extension, we broaden the “frequency” domain of Chebyshev polynomials
toR+

0 . We refer to these generalized functions as Chebyshev features.
This concept parallels the extension used in the Fourier features network (Tancik et al., 2020).

However, unlike Fourier features, Chebyshev features do not include a “phase” parameter.

3.2 CFNN Construction

The CFNN is designed as a fully connected feedforward network. The dimensionality of the
input and output layers corresponds to the dimensions of the target function: the input layer
containsd nodes, while the output layer consists of a single node (as in the case of this paper).

Let L ≥ 1 represent the number of hidden layers between the input and output layers. For
simplicity, we assume each hidden layer contains the same number ofK ≥ 1 nodes. In CFNN,
the first hidden layer employs the Chebyshev features (3) as the activation function, while the re-
maining hidden layers are the standard feedforward layers. An illustration of the CFNN structure
is provided in Fig. 1. CFNN then defines a mapping operator:

NCF := φout ◦ φL ◦ · · · ◦ φ2 ◦ φCF. (4)

Here,φCF is the Chebyshev features operator (3) in the first hidden layer,

φCF(x) = cos(WCF arccos(x)), (5)

x arccos cos(w2·)

cos(w1·)

...

cos(wK ·)

... ...

y

...

Chebyshev Feature Layer Hidden Layers

FIG. 1: Architechture of the proposed CFN

Volume 6, Issue 2, 2025

32 Xu, Chen, & Xiu

wherex ∈ Rd is the input, andWCF = [wT
1 , ..., wT

K] is the weight matrix, withK ≥ 1 repre-
senting the number of neurons in the next hidden layer. Both arccos(·) and cos(·) are applied
component-wise. The remaining layers accomplish the standard operations,

φi(x) := σ(Wix + bi), i = 2, . . . , L,

wherex is the outputs from the(i−1)th layer;Wi andbi are the weights and biases, respectively;
andσ(·) is the activation function. In this paper, we employ tanh(·) in these layers. Finally, the
output layer is a linear layer:

φout := Woutx + bout.

3.3 CFNN Training

In addition to the network architecture, network training plays a crucial role in ensuring that
CFNN achieves machine accuracy. Here, we discuss the key components of CFNN training.

3.3.1 Multistage Training

The idea of multistage training is to train NN on the training residual of the NN at the previous
stage. It is a general approach that can be adopted for any NN learning. In our setting, let us
assume we have trained a CFNN on the given training data set and denote it asN(0)

CF(x) at stage

0. LetE1(x) = f(x)−N(0)
CF(x) be the residue. In the next stage, we train a second CFNN,N(1)

CF ,
to approximate the scaled residual using the data set(xi, E1(xi)/ε1), i = 1, ..., N , where the
normalizing factorε1 is defined as

ε1 =

√√√√ 1
N

N∑

i=1

[E1(xi)]
2
. (6)

The final approximation is then

f̂ (1)(x) = N(0)
CF(x) + ε1N

(1)
CF(x). (7)

This iterative process can be readily extended to an arbitrary number of stagesS ≥ 1 to achieve
an approximation

f̂ (S)(x) = N(0)
CF(x) +

S−1∑

s=1

εsN
(s)
CF (x), (8)

whereN(s)
CF (x) is trained on the residue data setEs = f − f̂ (s−1),

(
xi,

1
εs

Es(xi)
)

, i = 1, ..., N,

with εs being the normalizing factor ofEs.

3.3.2 Network Initialization

Network initialization is an important computational aspect. In Wang and Lai (2024), scaling
parameters were introduced to multistage Fourier NN in order to achieve machine accuracy.
However, the selection of the scaling parameters depends critically on the properties of the target

Journal of Machine Learning for Modeling and Computing

Chebyshev Feature Neural Network for Accurate Function Approximation 33

function. This makes it challenging to apply in practical situations. For CFNN, we propose a
network initiation approach that can apply to general target functions.

Our initialization method employs random sampling of the network parameters with different
distributions. For the first hidden layer, i.e., the Chebyshev feature layer (5), the weightsWCF

are sampled via exponential distribution, with different parameters at different training stages
during the multistage training (8). Specifically, at thesth stage, we set

W
(s)
CF ∼ Exp(λ(s)) + c(s), s ≥ 0.

In stage 0,λ(0) = 5 and c(0) = 0; in the later stagesλ(s) = 51−s and c(s) = 2 × 5s−1.
This initialization encourages the network to first capture the lower-frequency components of
the target function, and then in the later stages to capture the high-frequency residuals. The
exponential distribution increases the likelihood of some of the parameters in the Chebyshev
feature layers aligning with the predominant frequencies of the target function and residues.

For the hidden layers after the Chebyshev feature layer, the weight matricesWi and biases
bi are initialized with the widely used Xavier method for all the training stages:

Wi ∼ N (0, σ2), σ =
√

2/(Ni−1 + Ni),

whereNi−1 andNi are the numbers of neurons in the previous and next layers. All biasesbi are
initialized to zero.

4. NUMERICAL EXAMPLE

In this section, we present a comprehensive set of numerical examples to examine the accuracy
of the proposed CFNN approach. In one dimension (d = 1), we consider the following six func-
tions:

f1(x) = x,

f2(x) = sin(2x + 1) + 0.2e1.3x,

f3(x) = |sin(πx)|2,

f4(x) =
(

1− x2

2

)
cos

[
m

(
x + 0.5x3

)]
, m = 30,

f5(x) = |x|,
f6(x) = sign(x).

(9)

In multidimension (d > 1), we test the following three functions that are widely used for multi-
dimensional function approximation:

f7(x) =
d∑

i=1

xi,

f8(x) = exp

(
−

d∑

i=1

σ2
i

(
xi + 1

2
−ωi

)2
)

,

f9(x) =
N∑

i=1

αi exp


−

d∑

j=1

σ2
ij

(
xj + 1

2
−ωij

)2

.

(10)

The domain of these functions will be specified in the following subsections. The parameters
α, σ, andω determine the behavior of the functions and are specified in each example. For the

Volume 6, Issue 2, 2025

34 Xu, Chen, & Xiu

Gaussian peak functionf8, we setσi = 1 andωi = 1, ∀i. For the multimodal functionf9, we set
N = 10, σij ≡ 1, and randomly sampleωij uniformly in [–1, 1] andαi uniformly in [–10, 10].

In most examples, we employ CFNN with three hidden layers, each containing 40 neurons
(including the first Chebyshev feature layer). For the network training at each stage, we employ
the Adam optimizer for 5000 epochs, followed by the L-BFGS optimizer for an additional 20,000
epochs. The Adam optimization utilizes an exponential decay learning rate, which is initialized
at 0.01 and decays by a factor of 0.97 for every 100 epochs. We conducted tests on both single
and double precision, and similar results were observed. In this paper, we only report double-
precision results.

4.1 One-Dimensional Examples

For one-dimensional examples, we set the domain asD = [−1, 1]. The training set consists
of 3000 equidistant points inD. To evaluate the generalization capability, we test the trained
network on a separate set of 10,000 equidistant points inD.

4.1.1 Smooth Functions

In this section, we consider the four smooth functions,f1, f2, f3, andf4, in Eq. (9).
For the linear functionf1(x), we conduct its approximation with a four-stage CFNN. The

combined results are presented in Fig. 2. In the left panel of the figure, the training loss is
displayed at the top, where we observe that the training RMSE is reduced toO(10−30) through
four stages of training. The target function and the CFNN approximation are plotted in the mid-
dle, where no visible difference can be observed. The pointwise difference, termed test error, is
shown in the bottom plot of the left panel. We observe the pointwise errors are ofO(10−13).

FIG. 2: Results off1(x). Left top: training loss history across all stages; Left bottom: test data ground truth
vs. prediction and prediction error; Right: training results at four stages showing the network output (red
dashed) against the ground truth/residual (blue solid) at each stage.

Journal of Machine Learning for Modeling and Computing

Chebyshev Feature Neural Network for Accurate Function Approximation 35

In the right panel of Fig. 2, we present the approximation results on thetraining data setfor
all four stages of CFNN, from top to bottom. Note that at Training Stage 0, the target function
is the original function, whereas at later stages the target functions are the residues of the CFNN
approximations of the previous stages. The pointwise error is shown at the very bottom. We
observe that for such an extremely oscillatory target function of Training Stage 3, the CFNN
can achieve an approximation error ofO(10−15), the machine epsilon level for double-precision
computation.

We now consider the smooth nonlinear functionf2, whose results are shown in Fig. 3. The
left panel shows (from top to bottom) the training loss decay over the four training stages; the
CFNN function approximation at the testing set (along with the target functionf2); and point-
wise error of the CFNN approximation. We observe that the training loss decays toO(10−28)
and trained CFNN approximation error is atO(10−12). The right panel shows the CFNN approx-
imation at the training data set at each training stage (from top down), along with the pointwise
error of the last stage CFNN approximation (at the bottow) which is atO(10−14).

The numerical results forf3 are shown in Fig. 4, andf4 in Fig. 5. In each plot, we show in
the left panel the training loss decay, the trained CFNN approximation, along with its pointwise
errors; in the right panel, we show the CFNN approximation after each stage, along with the
pointwise error of the last stage.

While the results off3 are similar to those off1 and f2, it is worth noting the results
for f4, which is a fairly oscillatory function (withm = 30). We observe that the one-stage
approximation (at Training Stage 0) is not very accurate, as shown in the top of the right panel
of Fig. 5. The DNN approximation missed a few wavefronts completely. We remark that this is
quite common for the standard DNN function approximation. With the multistage learning, the

FIG. 3: Results off2(x). Left top: training loss history across all stages; Left bottom: test data ground truth
vs. prediction and prediction error; Right: training results at four stages showing the network output (red
dashed) against the ground truth/residual (blue solid) at each stage.

Volume 6, Issue 2, 2025

36 Xu, Chen, & Xiu

FIG. 4: Results off3(x). Left top: training loss history across all stages; Left bottom: test data ground truth
vs. prediction and prediction error; Right: training results at four stages showing the network output (red
dashed) against the ground truth/residual (blue solid) at each stage.

FIG. 5: Results off4(x). Left top: training loss history across all stages; Left bottom: test data ground truth
vs. prediction and prediction error; Right: training results at four stages showing the network output (red
dashed) against the ground truth/residual (blue solid) at each stage.

Journal of Machine Learning for Modeling and Computing

Chebyshev Feature Neural Network for Accurate Function Approximation 37

DNN approximation becomes increasingly accurate. After four stages of training, the pointwise
approximation error is atO(10−10) over the training data set. (See the bottom of the right panel
of Fig. 5.) The pointwise approximation error over the testing data set is ofO(10−7). (See the
bottom of the left panel of Fig. 5.) This error is higher than the errors in the previous examples.
However, it is not unexpected because of the oscillatory nature of the function.

4.1.2 Ablation Study

To further examine the proposed CFNN structure, we perform an ablation study to the relatively
more challenging functionf4. The objective is to understand the roles of the components in the
CFNN structure. In particular, we consider the following cases:

Case 1.In the first layer of CFNN, change its activation function from the Chebyshev function
(5) to the standard tanh(·) activation function, which is initialized by the standard Xavier
initialization. By doing so, the network becomes a standard feedforward DNN with
multistage training. This case shall examine the effect of the Chebyshev function used
in the first layer of CFNN.

Case 2.Since CFNN at each stage does not share parameters, one may consider the multistage
CFNN a much larger DNN. To examine this, we employ a CFNN with 160 nodes per
layer, so that this CFNN has roughly the same number of hyperparameters as the one
used in Fig. 5. We also conduct a standard one-stage training for up to 10,000 epochs.
[The Chebyshev feature layer is initialized withWCF ∼ Exp(5−3).] This case shall
examine the impact of multistage training in CFNN.

The results of the two ablation cases are shown in Fig. 6, where Case 1 is on the left and
Case 2 is on the right. Compared with the original four-stage CFNN (Fig. 5), these two cases

FIG. 6: Results of ablation tests. Left: Case 1; Right: Case 2. From top to bottom, training error decay;
pointwise approximation error at the training data; pointwise error at the testing data.

Volume 6, Issue 2, 2025

38 Xu, Chen, & Xiu

demonstrate notable performance degradation. In particular, Case 1 can only achieve a point-
wise approximation error ofO(10−2), whereas for Case 2 it is ofO(10−5). Compared to the
O(10−10) error achieved by the proposed multistage CFNN, we conclude that both the Cheby-
shev function layer and the multistage training are essential in achieving high accuracy, with the
Chebyshev function layer playing perhaps a relatively larger role.

4.1.3 Nonsmooth Functions

We now consider the two nonsmooth functions in Eq. (9), theC0 functionf5 and the discontin-
uous functionf6. Both are approximated by four-stage CFNN. The results forf5 are shown in
Fig. 7, and the results forf6 in Fig. 8. Forf5, the training loss decays toO(10−17) and the train-
ing error is atO(10−8). For the discontinuous functionf6, the training loss decays toO(10−18)
and the training error is atO(10−9). These errors are larger than the machine accuracy errors in
the previous examples for smooth functions. This is expected as both functions are nonsmooth
atx = 0. On the other hand, achieving approximation error atO(10−8) for discontinuous func-
tions is quite remarkable, as most function approximation methods cannot achieve this level of
accuracy without special treatment of the singularity.

4.2 Multidimensional Examples

For high-dimensional examples, we consider the functions in Eq. (10) in[−1, 1]d with various
values ofd > 1. We use the proposed CFNN with four hidden layers and 40 neurons per layer

FIG. 7: Results off5(x). Left top: training loss history across all stages; Left bottom: test data ground truth
vs. prediction and prediction error; Right: training results at four stages showing the network output (red
dashed) against the ground truth/residual (blue solid) at each stage.

Journal of Machine Learning for Modeling and Computing

Chebyshev Feature Neural Network for Accurate Function Approximation 39

FIG. 8: Results off6(x). Left top: training loss history across all stages; Left bottom: test data ground truth
vs. prediction and prediction error; Right: training results at four stages showing the network output (red
dashed) against the ground truth/residual (blue solid) at each stage.

(including the first Chebyshev feature layer). The CFNN training is conducted over a set of
20,000 uniformly distributed random points. For validation, the approximation errors are com-
puted over an independent set of 10,000 uniformly distributed random points. Since it is difficult
to visualize high-dimensional functions, hereafter we will only report RMSE (root mean squared
error) in each case, where “training error” refers to RMSE over the training data points and “test-
ing error” refers to RMSE over the testing data points.

Numerical tests are performed in dimensionsd = 2, 5, 10, 20, and with learning stages as
high ass = 20. In Fig. 9, we show both the relative training errors and relative validation er-
rors at each stage forf7 in Eq. (10), at dimensiond = 2 andd = 20. We observe exponential
decay of the training errors with respect to the increase of training stages. The validation errors
quickly saturate. This is because the validation errors are computed on a set of fixed, albeit ran-
domly generated, points, whose geometrical property determines the achievable approximation
accuracy.

Very similar approximation behaviors are observed for all three examples in Eq. (10). There-
fore, we opt not to display all the plots. Instead, we tabulate the relative training errors and
relative validation errors forf7 in Table 1,f8 in Table 2, andf9 in Table 3.

5. CONCLUSION

In this paper, we presented the CFNN, as a novel DNN structure for accurate function approx-
imation. CFNN utilizes Chebyshev functions with learnable frequency in the first hidden layer.
Combined with multistage learning and a proper initialization procedure, CFNN is capable of

Volume 6, Issue 2, 2025

40 Xu, Chen, & Xiu

FIG. 9: The relative training and testing errors vs. stages, forf7 in Eq. (10). Upper left: training error for
d = 2; Upper right: testing error ford = 2; Lower left: training error ford = 20; Lower right: testing error
for d = 20.

TABLE 1: Summary of Errors forf7 in Eq. (10)

d Error Stage 1 Stage 4 Stage 8 Stage 12 Stage 16 Stage 20

2
Training 6.3941E-05 1.9261E-07 7.3827E-09 2.9078E-10 1.2144E-11 7.5117E-13
Testing 5.5311E-05 1.2439E-06 1.2699E-06 1.2698E-06 1.2698E-06 1.2698E-06

5
Training 3.9762E-04 2.0109E-05 7.8913E-07 3.0380E-08 1.4001E-09 7.6904E-11
Testing 3.3952E-04 2.6595E-04 2.6726E-04 2.6724E-04 2.6724E-04 2.6724E-04

10
Training 2.5685E-03 2.3697E-04 8.3021E-06 2.9867E-07 1.3257E-08 7.6304E-10
Testing 2.4612E-03 3.9598E-03 3.9698E-03 3.9698E-03 3.9698E-03 3.9698E-03

20
Training 8.3437E-03 6.2842E-04 1.8745E-05 4.9859E-07 1.8172E-08 1.1561E-09
Testing 9.4638E-03 1.4985E-02 1.4996E-02 1.4996E-02 1.4996E-02 1.4996E-02

achieving machine accuracy for function approximation, which is a critical component for sci-
entific machine learning.

ACKNOWLEDGMENT

This work was partially supported by AFOSR FA9550-24-1-0237.

Journal of Machine Learning for Modeling and Computing

Chebyshev Feature Neural Network for Accurate Function Approximation 41

TABLE 2: Summary of Errors forf8 in Eq. (10)

d Error Stage 1 Stage 4 Stage 8 Stage 12 Stage 16 Stage 20

2
Training 1.2234E-04 6.1596E-07 2.3968E-08 8.5897E-10 4.0117E-11 2.4655E-12
Testing 1.0396E-04 4.4164E-06 4.4850E-06 4.4853E-06 4.4853E-06 4.4853E-06

5
Training 9.9211E-04 8.3535E-05 3.2130E-06 1.1872E-07 5.7236E-09 3.2697E-10
Testing 8.7179E-04 1.1540E-03 1.1574E-03 1.1574E-03 1.1574E-03 1.1574E-03

10
Training 3.6173E-03 3.1649E-04 1.1602E-05 4.3113E-07 1.9065E-08 1.0722E-09
Testing 7.4386E-03 8.8001E-03 8.8122E-03 8.8124E-03 8.8124E-03 8.8124E-03

20
Training 2.3357E-02 1.9097E-03 6.0061E-05 1.7198E-06 5.9873E-08 3.8842E-09
Testing 1.3465E-01 1.3750E-01 1.3754E-01 1.3754E-01 1.3754E-01 1.3754E-01

TABLE 3: Summary of Errors forf9 in Eq. (10)

d Error Stage 1 Stage 4 Stage 8 Stage 12 Stage 16 Stage 20

2
Training 1.3982E-04 8.4385E-07 3.2461E-08 1.2081E-09 5.6564E-11 3.5100E-12
Testing 1.1950E-04 5.8842E-06 5.9729E-06 5.9728E-06 5.9728E-06 5.9728E-06

5
Training 3.1952E-03 3.5137E-04 1.2766E-05 4.5370E-07 2.1068E-08 1.1673E-09
Testing 3.1045E-03 4.4888E-03 4.5006E-03 4.5005E-03 4.5006E-03 4.5006E-03

10
Training 2.6111E-02 2.3253E-03 8.4740E-05 2.9449E-06 1.2474E-07 7.0201E-09
Testing 4.0942E-02 5.1587E-02 5.1669E-02 5.1670E-02 5.1670E-02 5.1670E-02

20
Training 7.2815E-02 5.6877E-03 1.6364E-04 4.5827E-06 1.6399E-07 1.0466E-08
Testing 6.0428E-01 6.1028E-01 6.1019E-01 6.1019E-01 6.1019E-01 6.1019E-01

REFERENCES

Brunton, S.L., Proctor, J.L., and Kutz, J.N., Discovering Governing Equations from Data by Sparse Iden-
tification of Nonlinear Dynamical Systems,Proc. Natl. Acad. Sci., vol. 113, no. 15, pp. 3932–3937,
2016.

Chowdhary, K.R., Natural Language Processing, inFundamentals of Artificial Intelligence, Berlin:
Springer, pp. 603–649, 2020.

Fanaskov, V.S. and Oseledets, I.V., Spectral Neural Operators,Dokl. Math., vol. 108, pp. S226–S232, 2023.

Hong, Q., Siegel, J.W., Tan, Q., and Xu, J., On the Activation Function Dependence of the Spectral Bias of
Neural Networks, arXiv Preprint arXiv:2208.04924, 2022.

Hornik, K., Stinchcombe, M., and White, H., Multilayer Feedforward Networks Are Universal Approxi-
mators,Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.

James, G., Witten, D., Hastie, T., and Tibshirani, R.,An Introduction to Statistical Learning, Vol. 112,
Berlin: Springer, 2013.

Jin, K.H., McCann, M.T., Froustey, E., and Unser, M., Deep Convolutional Neural Network for Inverse
Problems in Imaging,IEEE Trans. Image Process., vol. 26, no. 9, pp. 4509–4522, 2017.

Li, H., Schwab, J., Antholzer, S., and Haltmeier, M., NETT: Solving Inverse Problems with Deep Neural
Networks,Inv. Prob., vol. 36, no. 6, p. 065005, 2020a.

Li, L., Wang, L.G., and Teixeira, F.L., Performance Analysis and Dynamic Evolution of Deep Convolu-
tional Neural Network for Electromagnetic Inverse Scattering,IEEE Antennas and Wireless Propag.
Lett., vol. 18, no. 11, pp. 2259–2263, 2019.

Volume 6, Issue 2, 2025

42 Xu, Chen, & Xiu

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandkumar, A.,
Fourier Neural Operator for Parametric Partial Differential Equations, arXiv Preprint arXiv:2010.08895,
2020b.

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G.E., Learning Nonlinear Operators via DeepONet
Based on the Universal Approximation Theorem of Operators,Nat. Mach. Intell., vol. 3, no. 3, pp. 218–
229, 2021.

Pazzani, M.J. and Billsus, D., Content-Based Recommendation Systems,The Adaptive Web: Methods and
Strategies of Web Personalization, Berlin: Springer, pp. 325–341, 2007.

Qin, T., Wu, K., and Xiu, D., Data Driven Governing Equations Approximation Using Deep Neural Net-
works,J. Comput. Phys., vol. 395, pp. 620–635, 2019.

Quarteroni, A., Sacco, R., and Saleri, F.,Numerical Mathematics, Vol. 37, New York: Springer Science &
Business Media, 2006.

Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M., Hamprecht, F., Bengio, Y., and Courville, A., On
the Spectral Bias of Neural Networks, inInt. Conf. on Machine Learning, Long Beach, CA, pp. 5301–
5310, 2019.

Raissi, M., Perdikaris, P., and Karniadakis, G.E., Physics-Informed Neural Networks: A Deep Learning
Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equa-
tions,J. Comput. Phys., vol. 378, pp. 686–707, 2019.

Sirignano, J. and Spiliopoulos, K., DGM: A Deep Learning Algorithm for Solving Partial Differential
Equations,J. Comput. Phys., vol. 375, pp. 1339–1364, 2018.

Szego, G.,Orthogonal Polynomials, Providence, RI: American Mathematical Society, 1939.

Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi,
R., Barron, J., and Ng, R., Fourier Features Let Networks Learn High Frequency Functions in Low
Dimensional Domains,Adv. Neural Inf. Process. Syst., vol. 33, pp. 7537–7547, 2020.

Trefethen, L.N.,Approximation Theory and Approximation Practice, Philadelphia: SIAM, 2013.

Voulodimos, A., Doulamis, N., Doulamis, A., and Protopapadakis, E., Deep Learning for Computer Vision:
A Brief Review,Comput. Intell. Neurosci., vol. 2018, 2018. DOI: 10.1155/2018/7068349

Wang, Y. and Lai, C.Y., Multi-Stage Neural Networks: Function Approximator of Machine Precision,J.
Comput. Phys., vol. 504, p. 112865, 2024.

Xu, Z.Q.J., Zhang, Y., Luo, T., Xiao, Y., and Ma, Z., Frequency Principle: Fourier Analysis Sheds Light on
Deep Neural Networks, arXiv Preprint arXiv:1901.06523, 2019.

Yu, B., The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational
Problems,Commun. Math. Stat., vol. 6, no. 1, pp. 1–12, 2018.

Journal of Machine Learning for Modeling and Computing

