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We present a numerical framework for learning unknown stochastic dynamical systems using 
measurement data. Termed stochastic flow map learning (sFML), the new framework is an 
extension of flow map learning (FML) that was developed for learning deterministic dynamical 
systems. For learning stochastic systems, we define a stochastic flow map that is a superposition 
of two sub-flow maps: a deterministic sub-map and a stochastic sub-map. The stochastic training 
data are used to construct the deterministic sub-map first, followed by the stochastic sub-map. The 
deterministic sub-map takes the form of residual network (ResNet), similar to the work of FML 
for deterministic systems. For the stochastic sub-map, we employ a generative model, particularly 
generative adversarial networks (GANs) in this paper. The final constructed stochastic flow map 
then defines a stochastic evolution model that is a weak approximation, in term of distribution, 
of the unknown stochastic system. A comprehensive set of numerical examples are presented to 
demonstrate the flexibility and effectiveness of the proposed sFML method for various types of 
stochastic systems.

1. Introduction

In the recent years, data-driven modeling of unknown dynamical systems has become a prominent area of research among the 
scientific computing community. Methods for modeling various problems have been developed. See, for example, [5,29,33,24,21,35,

36,32], among many others. Most of the work focused on deterministic problems, as modeling stochastic systems using noisy data 
poses additional challenges.

For modeling of stochastic systems, most of the existing efforts focus on learning Itô-type stochastic differential equations (SDE). 
These include Gaussian process approximation ([46,1,10,28]), Gaussian mixture distribution model ([20]), deep neural networks 
(DNNs) model ([12,11,18,44,48]), polynomial approximations ([38,23]), sparsity promoting learning ([4]), reconstruction of the 
corresponding Fokker-Planck equations ([14]), to name a few. Methods based on physics-informed neural networks (PINNs) were 
also developed. For example, the work of [43,7] seeks to recover the evolution of the probability density function of the SDEs, while 
the work of [6] leverages PINNs to recover the governing SDE with transition pathway data.

The focus, as well as the contribution, of this paper is on the development of a numerical framework for data driven modeling of 
general stochastic dynamical systems. More specifically, the method presented in this paper is applicable to the learning of a wide 
class of stochastic systems beyond Itô-type SDEs and Gaussian noises. To accomplish this, we propose a method to learn a stochastic 
flow map from the data. This is an extension of the deterministic flow map learning (FML), which was first developed to learn 
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unknown autonomous dynamical systems ([31]), in conjunction with residual network (ResNet), and was later extended to non-

autonomous systems ([30]), systems with missing variables ([15]), as well as partial differential equations ([41,8]). For stochastic 
systems, the mapping between the solutions at different time instances, i.e., the flow map, is perturbed by an external stochastic 
inputs, which are unknown and often modeled via Wiener process. Consequently, the flow map can not be approximated via any 
deterministic function.

The proposed stochastic flow map learning (sFML) method seeks to construct a stochastic flow map consisting of two compo-

nents: a deterministic sub-flow map and a stochastic sub-flow map. Using the noisy training data, we first construct the deterministic 
sub-map by fitting a deterministic function to the data. This is accomplished via the use of ResNet, in the same manner as FML 
for learning deterministic dynamical systems ([31]). This ResNet fitting obviously results in non-negligible mismatch to the data, 
as a deterministic function can not fit noisy data perfectly (unless one grossly over-parameterize the function). We then model the 
mismatch, which is the noisy component of the training data, using a stochastic sub-map in the form of a generative model. In this 
paper, we explore the use of generative adversarial networks (GANs), which are a class of generative DNN models designed for gen-

erating data with the same distribution as that of the training data, cf., [17]. While successful for problems such as image generation 
([3,37,22]), text generation ([47,34]), etc., GANs also showed promises in scientific computing problems. See, for example, inverse 
problems ([42,25]), SDEs ([43,7,44]), uncertainty quantification ([45]), to name a few. In this paper, we employ Wasserstein GANs 
with gradient penalty (WGAN-GP) ([2,19]) to construct the stochastic sub-map. Upon learning both the deterministic sub-map and 
stochastic sub-map, we obtain the complete stochastic flow map. Using this stochastic flow map an evolution operator, we define 
an iterative scheme in time as a predictive model of the unknown stochastic dynamical system. The resulting sFML model is a weak 
approximation, in distribution, of the unknown stochastic system, and allows us to analyze the long-term system behavior under 
different initial conditions (not in the training data set). The effectiveness of the approach is then demonstrated via a comprehensive 
set of numerical examples.

This article is organized as follows: In Section 2, we introduce the setup of the problem. In Section 3, we give a brief review of 
the related materials, including the deterministic FML and GANs. The detailed description of the proposed sFML method is presented 
in Section 4, followed by the numerical examples in Section 5. We then conclude the paper by a brief summary in Section 6.

2. Problem statement

We consider a general stochastic dynamical system,

𝑑𝐱𝑡
𝑑𝑡

(𝜔) = 𝐟(𝐱𝑡,𝜔), 𝐱𝑡0 (𝜔) ∼ ℙ0, (2.1)

where 𝜔 ∈ Ω, an event space in a properly defined probability space, represents the random inputs, ℙ0 is the distribution for the 
initial condition 𝐱𝑡0 , and the solution 𝐱𝑡 ∶= 𝐱(𝜔, 𝑡) ∶ Ω × [0, 𝑇 ] ↦ℝ𝑑 , 𝑑 ≥ 1, is a 𝑑-dimensional stochastic process for some finite time 
𝑇 > 0. The right-hand-side (RHS) 𝐟 ∶ℝ𝑑 ×Ω ↦ℝ𝑑 is unknown. Consequently, the solution 𝐱𝑡 can not be obtained by solving (2.1).

2.1. Assumptions

We assume the dynamics of (2.1) is well-defined and time-homogeneous (cf. [27]). That is, for any Δ ≥ 0, the following property 
holds:

ℙ(𝐱𝑠+Δ|𝐱𝑠) = ℙ(𝐱Δ|𝐱0), 𝑠 ≥ 0. (2.2)

Let 𝚽𝑡,𝑡0 (𝐱0) = 𝐱(𝑡 + 𝑡0) be the time independent flow of (2.1). More precisely,

𝚽 ∶ (ℝ𝑑 ×ℝ) ×ℝ→ℝ𝑑 ×ℝ; 𝚽((𝐱0, 𝑡0), 𝑡) = (𝚽𝑡,𝑡0 (𝐱0), 𝑡+ 𝑡0). (2.3)

The time homogeneous assumption (2.2) implies that the Δ-shift flow map from 𝐱𝑠 to 𝐱𝑠+Δ produces a conditional distribution that 
depends only on the time lag Δ but not on the time variable 𝑠. Therefore, hereafter we use the following simplified notation for the 
flow map: For Δ ≥ 0, 𝑠 ≥ 0,

𝐆Δ ∶ℝ𝑑 ×ℝ→ℝ𝑑 ; 𝐱𝑠+Δ =𝐆Δ(𝐱𝑠). (2.4)

Naturally, we have 𝐆0 = 𝐈𝑑, the identity function, and

𝐆Δ(𝐱𝑠)∼ℙ(𝐱𝑠+Δ|𝐱𝑠) = ℙ(𝐱Δ|𝐱0).
Note that 𝐆Δ is equivalent to 𝚽 in (2.3). We merely suppressed its explicit dependence on the time variable, because its distribution 
is the conditional distribution that depends only on the time lag Δ. Hereafter we shall refer to 𝐆Δ the stochastic flow map.

Remark 2.1. If the right-hand-side of (2.1) takes the following form

𝐟(𝐱𝑡,𝜔) = 𝐚
(
𝐱𝑡
)
+ 𝐛
(
𝐱𝑡
)
𝐖̇𝑡(𝜔), (2.5)

where 𝐚 is the drift function, 𝐛 the diffusion function, and 𝐖𝑡 a multivariate Wiener process, we obtain the classical form of SDE, 
2

which is often written as
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𝑑𝐱𝑡 = 𝐚
(
𝐱𝑡
)
𝑑𝑡+ 𝐛

(
𝐱𝑡
)
𝑑𝐖𝑡. (2.6)

It satisfies time-homogeneous assumption (2.2). In this case, our basic assumption of 𝐟 being unknown mounts to the drift 𝐚 and the 
diffusion 𝐛 being unknown. Note that the discussion in the paper does not require the unknown SDE (2.1) to be in the classical form 
(2.6).

2.2. Setup and objective

Our goal is to construct a numerical model for the system (2.1), whose governing equations are unknown, by using measurement 
data of 𝐱𝑡, such that the dynamics of (2.1) can be accurately simulated by the constructed numerical model.

Suppose observation data of the system states 𝐱𝑡 are available over a sequence of discrete time instances 0 ≤ 𝑡0 < 𝑡1 < .... For 
simplicity, we assume the time instances are uniformly distributed with a constant time lag, Δ = 𝑡𝑛 − 𝑡𝑛−1, ∀𝑛 ≥ 1. Suppose we have 
observation data of 𝑁 ≥ 1 number of solution trajectories. That is, for each 𝑖 = 1, … , 𝑁 , we have the following solution sequence

𝐱
(
𝑡
(𝑖)
0

)
,𝐱
(
𝑡
(𝑖)
1

)
,… ,𝐱

(
𝑡
(𝑖)
𝐿𝑖

)
, (2.7)

where (𝐿𝑖 + 1) is the length of the sequence. This is the 𝑖-th solution trajectory, in the sense that it contains the solution of (2.1)

from the initial condition 𝐱(𝑡(𝑖)0 ). For notational convenience, hereafter we assume each of the trajectories is of the same length, i.e., 
𝐿𝑖 ≡𝐿, ∀𝑖.

Under the time-homogeneous assumption (2.2), the differences between the time instances are important, as opposed to the actual 
time values. Therefore, we denote the available data as a set of 𝑁 ≥ 1 solution trajectories of length (𝐿 + 1),

𝐗(𝑖) =
(
𝐱(𝑖)0 ,𝐱

(𝑖)
1 , ...,𝐱

(𝑖)
𝐿

)
, 𝑖 = 1,… ,𝑁, (2.8)

where 𝐱(𝑖)
𝑘

= 𝐱(𝑡(𝑖)
𝑘
), 1 ≤ 𝑖 ≤𝑁 , 0 ≤ 𝑘 ≤ 𝐿, and the time variables 𝑡(𝑖)

𝑘
are neglected. We remark that this is done for more than just 

notational convenience. It implies that the actual time variables do not need to be recorded in the data set during data collection. It 
makes our proposed method “coordinate free” and have a wider applicability in practice. In another word, each data sequence 𝐗(𝑖), 
𝑖 = 1, … , 𝑁 , can be considered as the solutions of the system (2.1) over time instances 𝑡𝑘 = 𝑘Δ, 𝑘 = 0, … , 𝐿, with an initial condition 
𝐱(𝑖)0 .

Given a training data set consisting sufficiently large number 𝑁 > 1 trajectory data (2.8), our goal is to construct a numerical 
stochastic flow map 𝐆̃Δ as an approximation to the true (and unknown) stochastic flow map 𝐆Δ (2.4). More specifically, we seek

𝐆̃Δ(𝐱)
𝑑
≈𝐆Δ(𝐱), (2.9)

where 
𝑑
≈ stands for approximation in distribution. The numerical flow map 𝐆̃Δ thus defines a numerical model such that given an 

initial condition ̃𝐱0,

𝐱̃𝑛+1 = 𝐆̃Δ(𝐱̃𝑛), 𝑛 ≥ 0, (2.10)

where we use subscript 𝑛 to denote the solution at time 𝑡𝑛 = 𝑛Δ hereafter. The numerical model (2.10) becomes a weak approximation 
to the true unknown system (2.1), in the sense that, given an arbitrary initial condition ̃𝐱0 = 𝐱0 ∼ ℙ0,

𝐱̃𝑛
𝑑
≈ 𝐱𝑛, 𝑛 = 1,2,… . (2.11)

Naturally, the condition (2.9) can be not accomplished by any deterministic function. We therefore propose to develop a stochastic 
flow map learning method to construct 𝐆̃Δ.

3. Preliminaries

The proposed stochastic flow map learning (sFML) method is an extension of the flow map learning (FML) method for determin-

istic systems. It involves the use of generative models. More specifically in this paper, we focus on the use of generated adversarial 
networks (GANs). Here, we briefly review the ideas of the deterministic FML method and GANs.

3.1. Deterministic flow map learning

Consider an autonomous system,

𝑑𝐱
𝑑𝑡

= 𝐟(𝐱), 𝐱 ∈ℝ𝑑 , (3.1)

where 𝐟 ∶ℝ𝑑 →ℝ𝑑 is not known. Its flow map is a mapping 𝚽 ∶ℝ𝑑 ×ℝ →ℝ𝑑 such that 𝚽(𝐱(𝑡), 𝑠) = 𝐱(𝑡 + 𝑠). Over the uniform time 
stencils with the constant time lag Δ we consider in this paper, the flow map defines the evolution of the solution
3

𝐱𝑛+1 =𝚽Δ(𝐱𝑛), (3.2)
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where we move the parameter Δ into the subscript. When the governing equation (3.1) is unknown, this evolutionary equation is 
also unknown.

The FML method developed in [31] utilizes data to learn the evolutionary relation (3.2) by constructing an approximate flow 
map 𝚽̃ ≈𝚽Δ such that

𝐱̃𝑛+1 = 𝚽̃Δ(𝐱̃𝑛) (3.3)

is an accurate approximation to (3.2). This is accomplished by training the approximate evolution (3.3) to match the training data 
set (2.8), which are deterministic data in this case.

Consider the 𝑖-th trajectory data from (2.8), 𝑖 = 1, … , 𝑁 . Using 𝐱(𝑖)0 as the initial condition, i.e., 𝐱̃(𝑖)0 = 𝐱(𝑖)0 , the approximate flow 
map evolution equation (3.3) generates a trajectory,

𝐗̃(𝑖) =
(
𝐱̃(𝑖)0 , 𝐱̃

(𝑖)
1 , ..., 𝐱̃

(𝑖)
𝐿

)
. (3.4)

The approximate flow map 𝚽̃Δ is then determined by minimizing the mean squared loss

min
𝑁∑
𝑖=1

‖‖‖𝐗̃(𝑖) −𝐗(𝑖)‖‖‖2𝐹 , (3.5)

where the Frobenius norm becomes vector 2-norm for scalar systems with 𝑑 = 1.

The work of [31] proposed the use of residual network (ResNet)

𝚽̃Δ = 𝐈+𝐍, (3.6)

where 𝐈 is the identity operator and 𝐍 ∶ℝ𝑑 →ℝ𝑑 stands for the mapping operator of a standard feedforward fully connected DNN. 
The minimization of the mean squared loss thus becomes a minimization problem for the hyper parameters defining the DNN. Once 
the training is completed, one obtains a predictive model for the underlying unknown dynamical system, such that, for a given initial 
condition 𝐱0,

𝐱̃𝑛+1 = 𝐱̃𝑛 +𝐍(𝐱̃𝑛), 𝑛 = 0,1,… , (3.7)

where ̃𝐱0 = 𝐱0. This framework has shown to be highly effective and accurate for many systems ([31,30,15]).

3.2. Generative adversarial networks

GANs (cf. [16]) are widely used, among many other tasks, to generate data with a desired target distribution. Consider a target 
distribution ℙ𝑟, with observed data 𝐱data ∼ ℙ𝑟. Let 𝐳 be random variables with a fixed known distribution ℙ𝐳 . For example, a normal 
distribution. In GANs, one defines a neural network, called generator, 𝐺(𝐳, 𝜃𝑔) with its hyper parameter set 𝜃𝑔 to map 𝐳 into a new 
distribution ℙ𝜃𝑔 . The goal is to tune the parameter 𝜃𝑔 such that the output distribution matches the target distribution ℙ𝑟. At the 
same time, one defines another neural network, called discriminator, 𝐷(𝐱, 𝜃𝑑 ) with its hyper parameter set 𝜃𝑑 to assign a score to the 
input 𝐱 such that it is able to distinguish whether 𝐱 is from the target distribution ℙ𝑟 or the “fake” distribution ℙ𝜃𝑔 .

The two networks 𝐷 and 𝐺 are trained by solving a zero-sum two-player game. The generator 𝐺 aims to “fool” the discriminator 
𝐷 and let it believe the samples of 𝐺(𝐳) are from the target distribution ℙ𝑟. At the same time, the discriminator 𝐷 aims to distinguish 
the samples from 𝐺(𝐳) and the real ℙ𝑟. The optimization problem can be written in the following minimax form:

min
𝐺

max
𝐷
𝐿GANs(𝐷,𝐺) ∶= 𝔼𝐱∼ℙ𝑟 [log𝐷(𝐱)] + 𝔼𝐳∼ℙ𝑧 [log(1 −𝐷(𝐺(𝒛)))]. (3.8)

In this paper, we adopt the popular WGANs ([2]), which trains the discriminator to approximate Wasserstein-1 distance between the 
real and fake samples. The definition of Wasserstein-𝑝 distance is:

𝑊𝑝(𝜇, 𝜈) =
(

inf
𝛾∈Γ(𝜇,𝜈)

𝔼(𝑥,𝑦)∼𝛾𝑑(𝑥, 𝑦)𝑝
)1∕𝑝

, 𝑝 ≥ 1, (3.9)

where Γ(𝜇, 𝜈) is the set of all couplings of 𝜇 and 𝜈, and 𝑑(⋅, ⋅) is a metric. More specifically, we employ WGANs with gradient penalty 
(WGANs-GP), which introduces a penalty on the gradient of the discriminator to enhance numerical stability ([19]). The loss function 
for WGANs-GP is:

𝐿WGANs-GP(𝐷,𝐺) = 𝔼
𝒙̃∼ℙ𝑔

[𝐷(𝒙̃)] − 𝔼
𝒙∼ℙ𝑟

[𝐷(𝒙)] + 𝜆 𝔼
𝒙̂∼ℙ

𝒙̂

[(‖‖∇𝒙̂
𝐷(𝒙̂)‖‖2 − 1

)2]
, (3.10)

where the distribution ℙ
𝒙̂

is defined to sample uniformly along straight lines between pairs of points sampled from the data distri-
4

bution ℙ𝑟 and ℙ𝑔 , and 𝜆 ≥ 0 is a penalty constant.
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Fig. 1. An illustration of the decomposition of stochastic dynamics into the superposition of a smooth dynamics, governed by the conditional expectation, and a noisy 
dynamics.

4. Stochastic flow map learning

We now discuss the proposed stochastic flow map learning (sFML) method. The method consists of two steps: (1) construction of 
a deterministic sub-flow map to model the averaged dynamics of the unknown system; and (2) construction of a stochastic sub-flow 
map to model the noisy dynamics of the unknown system. The two sub-flow maps are learned from the same training data set (2.8).

4.1. Method description

The solution of the unknown system (2.1) is governed by the (unknown) stochastic flow map 𝐆Δ (2.4). Its evolution over two 
consecutive time steps can be decomposed into two parts:

𝐱𝑛+1 =𝐆Δ(𝐱𝑛) = 𝔼
[
𝐱𝑛+1|𝐱𝑛]+ 𝐱′

𝑛+1, (4.1)

where the conditional mean 𝔼 
[
𝐱𝑛+1|𝐱𝑛] is a deterministic function of 𝐱𝑛 and 𝐱′

𝑛+1 contains the stochastic component. Therefore, we 
write the stochastic flow map as a composition of two parts,

𝐆Δ =𝐃Δ + 𝐒Δ, (4.2)

where

𝐃Δ ∶ℝ𝑑 ×ℝ→ℝ𝑑 = 𝔼(𝐱𝑛+1|𝐱𝑛), 𝐒Δ ∶ℝ𝑑 ×ℝ→ℝ𝑑 (4.3)

are the deterministic part and stochastic part, respectively. Hereafter, we refer to 𝐃Δ as deterministic sub-map, and 𝐒Δ as stochastic 
sub-map. Obviously, neither 𝐃Δ nor 𝐒Δ is known. Fig. 1 illustrates the idea of the decomposition. Note that, by following (4.1), (4.2)

is a nature expression of all stochastic processes.

Our proposed learning method seeks to construct numerical approximations to 𝐃Δ and 𝐒Δ by using the trajectory data (2.8). That 
is, we seek to construct a numerical stochastic flow map

𝐆̃Δ = 𝐃̃Δ + 𝐒̃Δ, (4.4)

where 𝐃̃Δ and 𝐒̃Δ are the approximation to 𝐃Δ and 𝐒Δ, respectively. Specifically, we seek 𝐆̃ to be an approximation of 𝐆 in 
distribution, in the sense that, for any 𝐱 ∈ℝ𝑑 ,

𝐆̃Δ(𝐱)
𝑑
≈𝐆Δ(𝐱). (4.5)

4.2. Learning deterministic sub-map

Given the trajectory data (2.8), we first construct a numerical deterministic sub-map

𝐃̃Δ ∶ℝ𝑑 ×ℝ→ℝ𝑑 (4.6)

as an accurate approximation of 𝐃Δ. This is accomplished by finding a deterministic operator such that it generates deterministic 
trajectories that are the best fit to the stochastic training data (2.8).

Let us consider the 𝑖-th trajectory data from (2.8), 𝑖 = 1, … , 𝑁 . Using 𝐱(𝑖)0 as the initial condition, the deterministic sub-map 
generates a deterministic trajectory,

𝐗
(𝑖)

=
(
𝐱̄(𝑖)0 , 𝐱̄

(𝑖)
1 , ..., 𝐱̄

(𝑖)
𝐿

)
, (4.7)
5

where 𝐱̄(𝑖)0 = 𝐱(𝑖)0 , and



Journal of Computational Physics 508 (2024) 112984Y. Chen and D. Xiu

𝐱̄(𝑖)
𝑛+1 = 𝐃̃Δ

(
𝐱̄(𝑖)𝑛
)
, 𝑛 = 0,… ,𝐿− 1. (4.8)

The deterministic sub-map in our method is defined as the one that minimizes the total mis-fit between the deterministic trajectories 
𝐗̄(𝑖) and the stochastic training trajectories 𝐗(𝑖). More specifically, we use the common mean squared loss as the mis-fit measure and 
find 𝐃̃Δ to accomplish

min
𝑁∑
𝑖=1

‖‖‖‖𝐗(𝑖)
−𝐗(𝑖)‖‖‖‖2𝐹 , (4.9)

where the Frobenius norm becomes vector 2-norm for scalar systems with 𝑑 = 1.

To make the minimization problem tractable, we confine the search for 𝐃̃Δ in a finite dimensional space. This is accomplished 
by employing a class of functions parameterized by a finite number of parameters. For low-dimensional dynamical systems, one may 
employ a polynomial space. See, for example, [40,26]. For more general systems whose dimensions 𝑑 may not be small, DNNs have 
become a more popular choice. In this paper, we also utilize DNN as the deterministic sub-map. Similarly to the work of deterministic 
FML ([31]), we employ ResNet structure and define

𝐃̃Δ(⋅;Θ) ∶= 𝐈+𝐍Δ(⋅;Θ), (4.10)

where 𝐈 is the identity matrix of size (𝑑 × 𝑑) and 𝐍Δ(⋅; Θ) ∶ ℝ𝑑 → ℝ𝑑 is the mapping operator of a connected feedforward DNN 
with its hyperparameter set Θ. Note that Θ is a finite set, whose cardinality is determined by the width and depth of the DNN. The 
minimization problem (4.9) thus becomes a minimization problem for the DNN parameter Θ, i.e.,

min
Θ

𝑁∑
𝑖=1

𝐿∑
𝑛=1

‖‖‖‖𝐱(𝑖)𝑛 − 𝐃̃[𝑛]
Δ

(
𝐱(𝑖)0 ;Θ

)‖‖‖‖22 , (4.11)

where 𝐃̃[𝑛]
Δ stands for 𝑛 times composition of the operator 𝐃̃Δ. Upon solving the minimization problem, the hyperparameters Θ in 

the DNN are fixed. We thus neglect Θ for notational convenience, unless confusion arises otherwise.

Note that in the loss function (4.11), the case of 𝐿 > 1 corresponds to the well-known multi-step loss, which is known to improve 
forecast accuracy for time series analysis, cf. [39,9,13]. It has also been used in FML for improving numerical stability of long-term 
predictions ([15,8]). Setting 𝐿 = 1, it is straightforward to see that the loss function (4.11) ensures that, for sufficiently large number 
of samples 𝑁 ≫ 1, we have

𝐃̃Δ(𝐱0) ≈ 𝔼(𝐱1|𝐱0), (4.12)

which implies, upon using the time homogeneous assumption (2.2),

𝐃̃Δ(𝐱𝑛) ≈𝐃Δ(𝐱𝑛) = 𝔼(𝐱𝑛+1|𝐱𝑛). (4.13)

Remark 4.1. We remark that the decomposition of the stochastic flow map 𝐆̃Δ into the deterministic sub-map and stochastic sub-

map in (4.4), by following (4.2), is mainly for computational purpose. From a mathematical point of view, one can directly learn the 
stochastic flow map 𝐆̃Δ from data via a generative model, in the same way of learning our stochastic sub-map in the next section. 
The purpose of learning the deterministic sub-map 𝐃̃Δ is to ensure that the stochastic learning part has mean value close to zero, 
which improves (sometimes drastically) the performance of the generative model. Consequently, the learning of the deterministic 
sub-map 𝐃̃Δ does not require high accuracy.

4.3. Learning stochastic sub-map

Once the deterministic sub-map 𝐃̃Δ is constructed, we proceed to construct the stochastic sub-map ̃𝐒Δ in the numerical stochastic 
flow map (4.4), as an approximation to the exact stochastic sub-map 𝐒Δ ∶ℝ𝑑 ×ℝ →ℝ𝑑 in (4.3). Note that as the stochastic component 
of the flow map 𝐆Δ, 𝐒Δ is subject to random input that is a function of the time lag Δ and unknown. In order to approximate this 
unknown random input, we define a generative model that incorporates an explicit random input. More precisely, we define

𝐒̃Δ ∶ℝ𝑑 ×ℝ ×ℝ𝑛𝑠 →ℝ𝑑 , 𝑛𝑠 ≥ 1, (4.14)

where 𝑛𝑠 defines the stochastic dimension of the stochastic sub-map. Note that the true stochastic dimension of the sub-map 𝐒Δ is 
unknown. Upon choosing a finite number 𝑛𝑠 ≥ 1, we seek to construct the numerical stochastic flow map

𝐆̃Δ = 𝐃̃Δ + 𝐒̃Δ ∶ℝ𝑑 ×ℝ ×ℝ𝑛𝑠 →ℝ𝑑 (4.15)

as a weak approximation (in distribution) to the true (unknown) stochastic flow map 𝐆Δ (2.4). Note that at this point the deter-

ministic sub-map 𝐃̃Δ is fixed, as it is already constructed by the procedure in the previous section. The only task is to construct the 
stochastic sub-map 𝐒̃Δ.

To construct the stochastic sub-map ̃𝐒Δ, we again utilize the training data set (2.8). For each of the 𝑖-th trajectory data in the set, 
6

𝑖 = 1, … , 𝑁 , we use 𝐱(𝑖)0 as the initial condition and generate
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Fig. 2. An illustration of the recurrent network structure for the deterministic sub-map 𝐃̃Δ .

𝐗̂(𝑖) =
(
𝐱̂(𝑖)0 , 𝐱̂

(𝑖)
1 , ..., 𝐱̂

(𝑖)
𝐿

)
, (4.16)

where 𝐱̂(𝑖)0 = 𝐱(𝑖)0 , and

𝐱̂(𝑖)
𝑛+1 = 𝐆̃Δ

(
𝐱̂(𝑖)𝑛 , 𝐳

(𝑖)
𝑛

)
, 𝑛 = 0,… ,𝐿− 1, (4.17)

where 𝐳(𝑖)𝑛 ∈ℝ𝑛𝑠 are i.i.d. random variables following a prescribed known distribution. For example, unit Gaussian.

We then minimize the distance between 
{
𝐗̂(𝑖)
}𝑁
𝑖=1

and 
{
𝐗(𝑖)}𝑁

𝑖=1, where the distance function is chosen to measure probability 

distribution. Since 𝐃̃Δ in 𝐆̃Δ is fixed, the minimization procedure thus determines the stochastic sub-map ̃𝐒Δ, which in turn becomes 
a minimization problem for the hyperparameters after we express 𝐒̃Δ in a parameterized family of functions.

In this paper, we adopt GANs for the construction of the stochastic sub-map 𝐒̃Δ. Specifically, we use DNN to represent 𝐒̃Δ, i.e.,

𝐒̃Δ ∶= 𝐒̃Δ(𝐱, 𝐳;Θ), (4.18)

where 𝐱 ∈ℝ𝑑 , 𝐳 ∈ℝ𝑛𝑠 , and Θ represents the hyperparameters in the DNN. Here 𝐳 is a random vector within known distribution. In 
our examples, we use i.i.d. unit normal distribution. The dimension of 𝐳, 𝑛𝑠 ≥ 1, is a choice made by user, in order to approximate 
the true probability space Ω whose dimension is unknown. Consequently, the stochastic flow map 𝐆̃Δ = 𝐆̃Δ(𝐱, 𝐳; Θ) by using (4.15).

By using the GANs approach described in Section 3.2, the generator is the stochastic flow map 𝐆̃Δ(𝐱, 𝐳; Θ), which generates the 

“fake” data sequence 
{
𝐗̂(𝑖)
}𝑁
𝑖=1

in (4.16). The generator is expected to minimize the distance between the “fake” data 𝐗̂ ∶=
{
𝐗̂(𝑖)
}𝑁
𝑖=1

(4.16) and the training data 𝐗 ∶=
{
𝐗(𝑖)}𝑁

𝑖=1 (2.8). To achieve this goal, a discriminator network , which is another DNN with its own 
hyperparameters, is trained to distinguish the two sets of data by approximating the Wasserstein-1 distance (3.9). For the network 
training, we adopt the WGANs with gradient penalty (WGANs-GP), whose loss function (3.10) takes the following form in our case:

𝐿(, 𝐆̃Δ) = 𝔼
𝐱̃∼𝐗̂

[(𝐱̃)] − 𝔼
𝐱∼𝐗

[(𝐱)] + 𝜆 𝔼
𝐱̂∼ℙ(𝐗̂,𝐗)

[(‖‖∇𝐱̂(𝐱̂)‖‖2 − 1
)2]
, (4.19)

where ℙ(𝐗̂, 𝐗) is uniform sampling distribution along the straight lines between pairs of points from 𝐗̂ and 𝐗, and 𝜆 ≥ 0 is a penalty 
constant.

4.4. DNN structures and algorithm

In this section, we summarize the sFML algorithm and its corresponding DNN structures.

Given the training data set (2.8), the sFML algorithm consists of the following two steps:

(1) Constructing the deterministic sub-map 𝐃̃Δ by minimizing the loss function (4.11). The multi-step loss (when 𝐿 > 1) requires 
recurrent use of the deterministic sub-map 𝐃̃Δ, as illustrated in Fig. 2.

(2) Constructing the stochastic sub-map 𝐒̃Δ, which defines the generator 𝐆̃Δ = 𝐃̃Δ + 𝐒̃Δ. Subsequently, the generator generates the 
“fake” data 𝐗̂ in (4.16) via (4.17). In the spirit of ResNet, we write (4.17) in an equivalent form

𝐱̂(𝑖)
𝑛+1 = 𝐱̂(𝑖)𝑛 + 𝐆̃Δ

(
𝐱̂(𝑖)𝑛 , 𝐳

(𝑖)
𝑛

)
, 𝑛 = 0,… ,𝐿− 1, 𝑖 = 1,… ,𝑁, (4.20)

where we use the same notation 𝐆̃Δ here to refer to the core DNN part of the operation. Therefore, 𝐆̃Δ corresponds to the 
difference 𝐲̂𝑛 = 𝐱̂𝑛 − 𝐱̂𝑛−1, 𝑛 = 1, … , 𝐿.

The generator is illustrated on the left of Fig. 3. The right of Fig. 3 illustrates the discriminator , which is a standard DNN that 
computes a score 𝐬 to the “fake” data. It also computes a score for the training data 𝐗. These are then used in the minimization 
of the loss function (4.19).
7

The algorithm of the sFML method is summarized in Algorithm 4.1.
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Fig. 3. Left: An illustration of the generator in the stochastic flow map. Right: Discriminator that computes a score for the data.

Algorithm 4.1 Learning SDE via GANs.

Input: Trajectory data of SDE: {(𝐱0, 𝐲1, ..., 𝐲𝐿)(𝑖)}𝑁𝑖=1 ; Deterministic model 𝐃̃Δ .

Parameters: Recurrent length 𝐿; Noise input dimension 𝑍 of generator; Layers and neurons each layer, Adam optimizer hyper-parameters 𝛽1, 𝛽2 , base learning rate 
𝑙𝑟 of DNN ̃𝐒Δ ,  with training parameter Θ𝐒 and Θ ; Iterations of training critic per generator iteration 𝑛ct ; Batch size 𝐵 and number of batches 𝑛𝐵 =𝑁∕𝐵 per 
epoch; Number of training epochs 𝑛𝐸 ; Gradient penalty constant 𝜆.

Note: In the following algorithm, we apply operator 𝐃̃, ̃𝐒 and  by rows when imputing a matrix.

1: for 𝑛 = 1, 2, ..., 𝑛𝐸 do

2: for 𝑖 = 1, 2, ..., 𝑛𝐵 do

3: Slice 𝑖th group of data {(𝐱0, 𝐲1, ..., 𝐲𝐿)(𝑖)}𝑖𝐵𝑖=1+(𝑖−1)𝐵 ; 𝐱̂0 ← 𝐱0 ;

4: for 𝑗 = 0, 1, ..., 𝐿 − 1 do

5: Sample 𝐵 𝑍-dimensional random vectors 𝐳 = {𝐳𝑘}𝐵𝑘=1 , 𝐳𝑘 ∼ (𝟎, 𝐈);
6: 𝐲̂𝑗+1 ← 𝐃̃Δ(𝐱̂𝑗 ) − 𝐱̂𝑗 + 𝐒̃Δ(𝐱̂𝑗 , 𝐳);
7: 𝐱̂𝑗+1 ← 𝐱̂𝑗 + 𝐲̂𝑗+1 ; ⊳ Generate fake SDE data
8: end for

9: for 𝑘 = 1, 2, ..., 𝐵 do

10: Sample 𝑛𝐵 random numbers 𝝐 = {𝜖𝑘}
𝑛𝐵
𝑘=1 , 𝜖𝑘 ∼ (0, 1);

11: 𝐲̃(𝑘)1∶𝐿 ← 𝜖𝑘𝐲
(𝑘)
1∶𝐿 + (1 − 𝜖𝑘)𝐲̂(𝑘)1∶𝐿 ;

12: 𝑃
(𝑘)


←
(‖‖‖∇(𝐱(𝑘)0 ,𝐲̃

(𝑘)
1∶𝐿 )

(𝐱(𝑘)0 , 𝐲̃
(𝑘)
1∶𝐿)
‖‖‖2 − 1

)2
;

13: 𝐿
(𝑘)


← (𝐱(𝑘)0 , ̂𝐲
(𝑘)
1∶𝐿) −(𝐱(𝑘)0 , 𝐲

(𝑘)
1∶𝐿) + 𝜆𝑃

(𝑘)


;

14: end for

15: Θ ← Adam( 1
𝐵

∑𝐵
𝑘=1𝐿

(𝑘)

, 𝑙𝑟, 𝛽1, 𝛽2); ⊳ Update Critic

16: if mod(𝑛𝐵, 𝑛ct) = 0 then

17: for 𝑘 = 1, 2, ..., 𝐵 do

18: 𝐿
(𝑘)
𝐒 ← −(𝐱(𝑘)0 , ̂𝐲

(𝑘)
1∶𝐿);

19: end for

20: Θ𝐒 ← Adam( 1
𝐵

∑𝐵
𝑘=1 𝐿

(𝑘)
𝐒 , 𝑙𝑟, 𝛽1, 𝛽2); ⊳ Update Generator

21: end if

22: end for

23: end for

4.5. Model prediction and analysis

Upon satisfactory training of the DNNs, we obtain a predictive sFML model for the underlying unknown SDE. For a given initial 
condition 𝐱0,

𝐱̃𝑛+1 = 𝐆̃Δ
(
𝐱̃𝑛, 𝐳𝑛

)
= 𝐃̃Δ(𝐱̃𝑛) + 𝐒̃Δ(𝐱̃𝑛, 𝐳𝑛), 𝑛 = 0,1,2… , (4.21)

with ̃𝐱0 = 𝐱0. The model can be marched forward in time far beyond the length of the training data.

Note that the sFML model resembles the form of the classical SDE (2.6), in case that the underlying unknown SDE is in the form 
of (2.6). In fact, we can re-write the sFML model as

𝐱̃𝑛+1 = 𝐱̃𝑛+𝐚̂(𝐱̃𝑛)Δ + 𝐛̂(𝐱̃𝑛)𝛿𝐖𝑛, (4.22)

where

𝐚̂(𝐱) =
𝔼𝐳(𝐆̃Δ(𝐱, 𝐳) − 𝐱)

Δ
, 𝐛̂(𝐱) =

Std𝐳(𝐆̃Δ(𝐱, 𝐳))√
Δ

, (4.23)

and can be considered the effective drift and diffusion, respectively. Therefore, if the underlying unknown true SDE is of the classical 
form (2.6), we expect the effective drift and diffusion (4.23) of the sFML model (4.21) to be good approximations of the true drift 
8

and diffusion, respectively.
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Fig. 4. Solutions of the OU process. Left: samples of the training data; Right: simulated samples by the sFML model for up to 𝑇 = 4.0, with an initial condition 𝑥0 = 1.5.

5. Numerical results

In this section, we present several numerical examples to demonstrate the performance of the proposed sFML method. The 
examples cover the following cases:

• Linear SDEs. These include an Ornstein-Uhlenbeck (OU) process and a geometric Brownian motion;

• Nonlinear SDEs. These include SDEs with exponential and trigonometric drift or diffusions, as well as the well-known stochastic 
double-well potential problem;

• SDEs with non-Gaussian noise, including exponential distribution and lognormal distribution.

• Two-dimensional SDEs, which include a 2-dimensional OU process and a stochastically driven harmonic oscillator.

For all of these problems, the exact SDEs are known. They are used to generate the training data sets, which are generated by solving 
the SDEs with Euler-Maruyama method, with initial conditions uniformly distributed in a region (specified later for each example). 
The SDEs are solved using a time step Δ = 0.01 for 100 steps, from which we randomly choose a length 𝐿 = 40 sequence to form our 
training data set (2.8). In other words, the training data are solution sequences of length 𝑇 = 0.4. Our training data set (2.8) consists 
of 𝑁 = 10, 000 such trajectories.

For the DNN structure, we use a simple fully connect feedforward DNN for both the deterministic sub-map 𝐃̃Δ (4.10) (see Fig. 2) 
and the discriminator  in Fig. 3 in the generator. In most examples, we use 3 layers, where each layer has 20 nodes. The exceptions 
are the 2-dimensional examples, where each layer has 40 nodes. In the training process of the GANs, we follow Algorithm 4.1 and 
set 𝑛ct = 5, 𝛽1 = 0.5, 𝛽2 = 0.999, 𝑙𝑟 = 5 × 10−5. All examples are trained up to 100, 000 epochs.

To examine the performance of the constructed sFML models, we provide the following ways:

• Simulated trajectories and their mean and standard deviation, for visual comparisons as well as the basic statistics;

• Conditional distribution the stochastic flow map 𝐆̃Δ, in comparison to that of the true flow map 𝐆Δ;

• Evolution of the predicted solution distribution at certain times beyond the training data time domain.

• Comparison of the effective drift and diffusion (4.23) against the true drift and diffusion to those of true SDEs.

5.1. Linear SDEs

For scalar linear SDEs, we present the results for learning an OU process and a geometric Brownian motion.

5.1.1. Ornstein–Uhlenbeck process

We first consider the following Ornstein–Uhlenbeck (OU) process,

𝑑𝑥𝑡 = 𝜃(𝜇 − 𝑥𝑡)𝑑𝑡+ 𝜎𝑑𝑊𝑡, (5.1)

where 𝜃 = 1.0, 𝜇 = 1.2, and 𝜎 = 0.3. The training data are generated by solving the SDE with initial conditions uniformly sampled 
from  (0, 0.25). Some of these samples are shown on the left of Fig. 4. Upon training the DNNs and creating the sFML model for the 
OU process, we generate simulated trajectories from the learned model for up to 𝑇 = 4.0. On the right of Fig. 4, we show the sFML 
model simulation results with an initial condition 𝑥0 = 1.5 for time up to 𝑇 = 4.0. We also compute the mean and standard deviation 
of the sFML model prediction, averaged over 100, 000 simulation samples. The results are shown in Fig. 5, along with the reference 
mean and variance from the true OU process. We observe good agreement between the learned sFML model and the true model. 
9

Note that the agreement goes beyond the time horizon of the training data by a factor of 4.
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Fig. 5. Mean and standard deviation (STD) of the OU process by the sFML model.

Fig. 6. Effective drift and diffusion of the OU process. Left: drift 𝑎(𝑥); Right: diffusion 𝑏(𝑥).

Fig. 7. OU process at steady state: comparison of the conditional distribution of the sFML model 𝐆̃Δ(0.8) against that of the true model 𝐆Δ(0.8).

In Fig. 6, we show the recovered effective drift and diffusion functions for the OU process, by following the procedure (4.23)

using 100, 000 sFML model simulations. Comparing them to the true drift and diffusion, we observe good accuracy of the recovered 
functions, with relative errors on the order of 10−2. Note that the discrepancy is relatively larger towards the end points of the 
comparison domain. This is expected because there are far less number of samples in these regions to gather highly accurate statistical 
results. Such a behavior is presented throughout all the examples in this paper. The OU process eventually reaches a steady state. 
In Fig. 7, we plot the histogram for the samples of 𝐆̃Δ(0.8), as a comparison of the conditional distribution against that of the true 
10

stochastic flow map 𝐆Δ(0.8). Good agreement can be observed.
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Fig. 8. OU process: comparison of covariance matrix spectra of the sFML model solution sequence (“Prediction”) against that of the true solution (“Ground Truth”).

Fig. 9. Solutions of the geometric Brownian motion. Left: samples of true solution for the training data; Right: simulated samples by the sFML model with an initial 
condition 𝑥0 = 0.5.

We conduct further examination of the solution time sequence produced by the sFML model. In Fig. 8, we present the spectra of 
the covariance function of the simulated sequences by the sFML model, along with that of the true solution sequence under the same 
initial condition. We observe good agreement between the sFML model and the true model.

5.1.2. Geometric Brownian motion

We now consider geometric Brownian motion, which, unlike the OU process, does not have steady state. In particular, we consider

𝑑𝑥𝑡 = 𝜇𝑥𝑡𝑑𝑡+ 𝜎𝑥𝑡𝑑𝑊𝑡, (5.2)

where 𝜇 and 𝜎 are constant parameters. We set 𝜇 = 2.0, 𝜎 = 1.0 in our test.

On the left of Fig. 9, some samples of the true solutions for the training data are shown. These are generated from initial conditions 
uniformly distributed  (0, 2). On the right of Fig. 9, we show the simulated solution samples by the trained sFML model with an 
initial condition 𝑥0 = 0.5. The mean and STD of the solution comparison are shown in Fig. 10. Good agreement can be observed. 
Since this geometric Brownian motion grows exponentially fast over time, the simulation is stopped at 𝑇 = 1.0.

The effective drift and diffusion functions recovered by the sFML model are shown in Fig. 11. Good agreement with the true 
drift and diffusion can be observed. The conditional distribution produced by the stochastic flow map 𝐆̃Δ(𝑥) is plotted at 𝑥 = 6 (an 
arbitrary choice for illustration purpose). We note that it agrees quite well with the true distribution at 𝐆Δ(6), see also Fig. 12.

5.2. Nonlinear SDE

Similar to the work of [10], we present two Itô type SDEs with non-linear drift and diffusion functions.

5.2.1. SDE with nonlinear diffusion

We first consider a SDE with a nonlinear diffusion,
11

𝑑𝑥𝑡 = −𝜇𝑥𝑡𝑑𝑡+ 𝜎𝑒−𝑥
2
𝑡 𝑑𝑊𝑡, (5.3)
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Fig. 10. Mean and standard deviation of the geometric Brownian motion by the sFML model.

Fig. 11. Geometric Brownian motion. Left: recovery of the drift 𝑎(𝑥) = 𝜇𝑥; Right: recovery of the diffusion 𝑏(𝑥) = 𝜎𝑥.

Fig. 12. Geometric Brownian motion: comparison of the conditional distribution 𝐆Δ(6) and 𝐆̃Δ(6).

where 𝜇 and 𝜎 are constants. In this example, we set 𝜇 = 5 and 𝜎 = 0.5. The SDE is solved with initial conditions from a uniform 
distribution  (−1, 1), for up to time 𝑇 = 1.0. Some of the solution samples are shown on the left of Fig. 13. The simulated solutions 
of the learned sFML model are shown on the right of Fig. 13, with an initial condition 𝑥0 = −0.4 and for time up to 𝑇 = 10, for visual 
comparison. The evolutions of mean and STD of the sFML model are shown in Fig. 14, where good agreement with those of the true 
solution can be observed.

The recovered effective drift and diffusion functions are plotted in Fig. 15, whereas the conditional distribution of 𝐆̃Δ(−0.3) is 
12

plotted in Fig. 16. Again, good agreement can be observed when compared to the reference solutions.
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Fig. 13. SDE with nonlinear diffusion (5.3). Left: samples of the training data; Right: samples of the learned sFML model simulations for up to 𝑇 = 10.0 with an initial 
condition 𝑥0 = −0.4.

Fig. 14. Mean and standard deviation of the learned sFML model for (5.3).

Fig. 15. Nonlinear SDE (5.3). Left: recovery of the drift 𝑎(𝑥) = −𝜇𝑥; Right: recovery of the diffusion 𝑏(𝑥) = 𝜎𝑒−𝑥2 .

5.2.2. Trigonometric drift and diffusion

We now consider the following non-linear SDE:

𝑑𝑥𝑡 = sin(2𝑘𝜋𝑥𝑡)𝑑𝑡+ 𝜎 cos(2𝑘𝜋𝑥𝑡)𝑑𝑊𝑡, (5.4)

where the constant 𝑘 and 𝜎 are set at 𝑘 = 1 and 𝜎 = 0.5. The training data are generated with initial conditions uniformly distributed 
as  (0.35, 0.7) for up to time 𝑇 = 1.0 as the training data. See the left of Fig. 17 for an example trajectory. Upon training the sFML 
13

model from the training data, we simulate the learned process for a longer time up to 𝑇 = 10. A sample of the simulated trajectory 
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Fig. 16. Nonlinear SDE (5.3). Comparison of the conditional distribution for 𝐆Δ(−0.3) and 𝐆̃Δ(−0.3).

Fig. 17. Nonlinear SDE (5.4). Left: a sample trajectory used in the training data; Right: a sample trajectory of the simulated solution by the learned sFML model for 
time up to 𝑇 = 10.0 with an initial condition 𝑥0 = 0.6.

Fig. 18. Mean and standard deviation of the learned sFML model for (5.4).

is shown on the right of Fig. 17, under the initial condition 𝑥0 = 0.6. The mean and standard deviation of the solutions are estimated 
using 100, 000 sFML model simulations and plotted Fig. 18. They agree very well with those of the true solutions.

We then compute the effective drift and diffusion functions (4.23) from the learned sFML model and compare them to the true drift 
and diffusion functions. The comparison is shown in Fig. 19, where good agreement can be seen. The accuracy starts to deteriorate

near the end points, as there are increasingly small number of samples towards the end points. Accuracy loss is thus expected. The 
conditional distribution by the learned sFML stochastic flow map 𝐆̃Δ(𝑥) is plotted for 𝑥 = 0.5 (an arbitrary choice for illustration 
14

purpose). It agrees well with the distribution of the true stochastic flow map 𝐆Δ(0.5), see also Fig. 20.
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Fig. 19. Nonlinear SDE (5.4). Left: recovery of the drift 𝑎(𝑥) = sin(2𝑘𝜋𝑥); Right: recovery of the diffusion 𝑏(𝑥) = 𝜎 cos(2𝑘𝜋𝑥).

Fig. 20. Nonlinear SDE (5.4): comparison of the conditional distribution of 𝐆Δ(0.5) and 𝐆̃Δ(0.5).

5.2.3. SDE with double well potential

We consider a one-dimensional SDE with a double well potential:

𝑑𝑥𝑡 = (𝑥𝑡 − 𝑥3𝑡 )𝑑𝑡+ 𝜎𝑑𝑊𝑡, (5.5)

where the constant 𝜎 is set as 𝜎 = 0.5. The stochastic driving term is sufficiently large to induce random solution transitions between 
the two stable states of 𝑥 = 1 and 𝑥 = −1.

The training data are generated by solving the true SDE with initial conditions uniformly sampled in  (−2.5, 2.5) for up to 
𝑇 = 1.0. A few such sample trajectories are shown on the left of Fig. 21. We emphasize that the trajectories in the training data set 
are so short that they do not contain transitions between the two stable states. Using these short bursts of training data, we train the 
sFML model and conduct long-term predictions. The results of two solution trajectories with an initial condition 𝑥0 = 1.5 for time up 
to 𝑇 = 300 are shown on the right of Fig. 21. We clearly observe the solution transition between the two stable states. The transitions 
occur with a small probability and over a time frame on the order of 𝑂(10). Thus, the transitions are not observed in the training 
data, which span only 𝑇 = 0.4. This result demonstrates the learning capability of sFML – the learned model is able to produce the 
correct solution behaviors even though they may not be present in the training data.

We then recover the drift and diffusion functions by computing the effective drift and diffusion functions (4.23). The results are 
shown in Fig. 22, where good agreement in the drift function is observed. Although the error in the constant diffusion function 
is visible, it is rather acceptable at about 2%. The evolution of the probability distribution of the solution is shown in Fig. 23, at 
various time levels 𝑇 = 0.5, 10.0, 30.0, 100.0. It is started from an initial condition 𝑥0 = 1.5 and computed by using 100, 000 simulated 
trajectories by the sFML model. Excellent agreement with the reference solution from the true SDE is evident.

5.3. SDEs with non-Gaussian noises

The applicability of the proposed sFML approach is not restricted to modeling the classical SDE with Gaussian noises from Wiener 
15

process. To demonstrate this, we consider SDEs with non-Gaussian noises.
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Fig. 21. SDE with double well potential (5.5). Left: samples of the training date trajectories for 𝑇 = 1.0 (Note that there are no solution transitions.); Right: solution 
trajectories by the learned sFML model for time 𝑇 = 300.0, with an initial condition 𝑥0 = 1.5. Note the state transitions occur over time.

Fig. 22. SDE with double well potential (5.5). Left: recovery of the drift 𝑎(𝑥) = 𝑥− 𝑥3 ; Right: recovery of diffusion 𝑏(𝑥) = 0.5.

Fig. 23. SDE with double well potential (5.5). The predicted solution pdf’s with an initial condition 𝑥0 = 1.5 against those of the reference true solution at time 
𝑇 = 0.5, 10, 30 and 100 (from left to right).

5.3.1. Noises with exponential distribution

Let us consider a SDE with exponentially distributed noise inputs,

𝑑𝑥𝑡 = 𝜇𝑥𝑡𝑑𝑡+ 𝜎
√
𝑑𝑡𝜂𝑡, 𝜂𝑡 ∼ Exp(1), (5.6)

where 𝜂𝑡 has an exponential pdf 𝑓𝜂(𝑥) = 𝑒−𝑥, 𝑥 ≥ 0, and the constants are set as 𝜇 = −2.0 and 𝜎 = 0.1.

We plot a few samples of the training data in the left of Fig. 24 up to 𝑇 = 1.0. Some of the simulated trajectory samples by the 
learned sFML model are shown are on the right of Fig. 24 for up to 𝑇 = 5.0. The mean and standard deviation of the sFML prediction 
are shown on the left of Fig. 25, where good agreement with those of the truth can be observed. On the right of Fig. 25, we show 
the conditional distribution by the sFML model generator 𝐆̃Δ(𝑥) at 𝑥 = 0.34 (an arbitrary choice for demonstration). It agrees with 
the reference solution 𝐆Δ(0.34) generally well, with visible discrepancy at the left end of the domain. The reference distribution is 
exponential and has a clear cut-off, whereas the sFML solution exhibits a small tail. This is not surprising because the sFML generative 
model is built upon stochastic input 𝐳 with the standard Gaussian distribution. Presumably the small discrepancy in the left tail can 
be eliminated if one uses exceedingly high order accuracy in the approximation. This is difficult to achieve with DNN training and 
we did not pursue it further.

Upon moving the non-zero mean of the exponential distribution out of the noise term, we can write the SDE in the form of the 
16

classical SDE (2.6) and obtain the drift and diffusion as
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Fig. 24. SDE with exponential noise. Left: samples of the training data trajectories; Right: Samples of the sFML model simulations with an initial condition 𝑥0 = 0.4
for up to 𝑇 = 5.0.

Fig. 25. SDE with exponential noise. Left: mean and standard deviation of the sFML model predictions; Right: conditional distribution by the sFML model 𝐆̃Δ(𝑥)
against that of the true model 𝐆Δ(𝑥) at 𝑥 = 0.34.

Fig. 26. SDE with exponential noise. Left: Recovery of the drift 𝑎(𝑥) = 𝜇𝑥+ 𝜎∕
√
Δ; Right: recovery of the diffusion 𝑏(𝑥) = 𝜎.

𝑎(𝑥𝑛) = 𝔼𝜔
(𝑥𝑛+1 − 𝑥𝑛

Δ
|||𝑥𝑛) = 𝜇𝑥𝑛 + 𝜎√

Δ
,

𝑏(𝑥𝑛) = Std𝜔

(𝑥𝑛+1 − 𝑥𝑛
Δ

|𝑥𝑛) = 𝜎. (5.7)

The effective drift and diffusion recovered by the sFML model are shown in Fig. 26, where we observe very good agreement with the 
17

reference truth.
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Fig. 27. SDE with lognormal distribution. Left: Samples of the training trajectory data; Right: Simulation sample of the trained sFML model with an initial condition 
𝑥0 = 1.5.

Fig. 28. SDE with lognormal distribution. Left: mean and standard deviation of the sFML model prediction with the initial condition 𝑥0 = 1.5; Right: conditional 
probability by the sFML generator 𝐆̃Δ(𝑥) at 𝑥 = 0.4.

5.3.2. Noise with lognormal distribution

We now consider the following stochastic system

𝑑 log𝑥𝑡 = (log𝑚− 𝜃 log𝑥𝑡)𝑑𝑡+ 𝜎𝑑𝑊𝑡, (5.8)

where 𝑚, 𝜃 and 𝜎 are parameters. This is effectively an OU process after taking an exponential operation. Its dynamics can be solved 
by using Euler method with the following scheme:

𝑥𝑛+1 =𝑚Δ𝑥1−𝜃Δ𝑛 𝜂
𝜎
√
Δ

𝑛 , 𝜂𝑛 ∼ Lognormal(0,1). (5.9)

In our test, we take 𝑚 = 1∕
√
𝑒, 𝜃 = 1.0 and 𝜎 = 0.3. It is obvious that the conditional distribution from the stochastic flow map 

𝐆Δ(𝑥) follows lognormal distribution for any 𝑥. The training data are generated with initial condition uniformly sampled from 
 (0.1, 2.0) up to time 𝑇 = 1.0. See the left of Fig. 27 for some samples. Upon training the sFML model, we conduct system prediction 
for time up to 𝑇 = 5.0. Some simulation samples with an initial condition 𝑥0 = 1.5 are shown on the right of Fig. 27. The mean and 
standard deviation from the sFML model prediction, as well as the distribution of 𝐆̃Δ , are shown in Fig. 27. Good agreement with 
the truth reference solutions can be observed, see also Fig. 28.

Like in the previous example, we rewrite this SDE in the form of the classical SDE (2.6) and obtain

𝑎(𝑥𝑛) = ln

[(
𝔼𝜔
(
𝑥𝑛+1
𝑥𝑛

|||𝑥𝑛
))1∕Δ

]
= ln(𝑚𝑥−𝜃𝑛 ) + 𝜎

2

2
,

𝑏(𝑥𝑛) = Std𝜔
(
𝑥𝑛+1|𝑥𝑛) =√𝑒𝜎2Δ − 1(𝑚𝑒𝜎2∕2)Δ(1 − 𝜃Δ)𝑥𝑛.

(5.10)
18

From the learned sFML model, we estimate the effective drift and diffusion via
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Fig. 29. SDE with lognormal distribution. Left: recovery of the drift 𝑎(𝑥); Right: recovery of conditional standard deviation 𝑏(𝑥). (See (5.10) for the reference solution.)

𝑎̂(𝑥) = ln
⎡⎢⎢⎣
(
𝔼𝜔

(
𝐆̃Δ(𝑥,𝜔)
𝑥

))1∕Δ⎤⎥⎥⎦ , 𝑏̂(𝑥) = Std𝜔(𝐆̃Δ(𝑥,𝜔)). (5.11)

The comparison of functions for 𝑎(𝑥) and 𝑏(𝑥) are shown in Fig. 29, where we observe good agreement between the recovered 
functions by the learned sFML model and the reference (5.10).

5.4. Two-dimensional SDEs

In this section, we present examples of learning two-dimensional SDE systems.

5.4.1. Two-dimensional Ornstein–Uhlenbeck process

We first consider a 2-dimensional OU process,

𝑑𝐱𝑡 = 𝐁𝐱𝑡𝑑𝑡+𝚺𝑑𝐖𝑡, (5.12)

where 𝐱𝑡 = (𝑥1, 𝑥2) ∈ℝ2 are the state variables, 𝐁 and 𝚺 are (2 × 2) are matrices. In our test, we set

𝐁 =
(
−1 −0.5
−1 −1

)
𝚺 =
(
1 0
0 0.5

)
.

Our training data are generated with random initial conditions uniformly sampled from  ([−4, 4] × [−3, 3]), for a termination time 
up to 𝑇 = 1.0. In the top row of Fig. 30, a few sample training data trajectories are shown. Upon training the sFML model, we conduct 
system predictions for time up to 𝑇 = 5. In the bottom row of Fig. 30, we show a few prediction trajectories by the trained sFML 
model, with an initial condition of 𝐱0 = (0.3, 0.4). The mean and the standard deviation of the model prediction are shown Fig. 31, 
where we observe very good agreement with the reference solutions. To examine the conditional probability distribution generated 
by the learned sFML model, we present both the joint probability distribution and its marginal distributions by the sFML generator 
𝐆̃Δ(𝐱) at 𝐱 = (0, 0), along with the true distribution 𝐆Δ for comparison. The results are in Fig. 32, where good agreement with the 
true conditional distribution can be seen.

5.4.2. Stochastic oscillator

In this example, we consider the following stochastic oscillator,{
𝑥̇1 = 𝑥2,
𝑥̇2 = −𝑥1 + 𝜎𝑊̇𝑡.

(5.13)

Here 𝜎 is the perturbation parameter and set as 𝜎 = 0.1 in our test. Our training data are generated with initial conditions uniformly 
sampled from  ([−1.5, 1.5] × [−1.5, 1.5]), for time up to 𝑇 = 1.0. Some of the training data trajectories are shown on the left of 
Fig. 33, for visualization purpose. For the sFML model training, we use 100 recurrent steps for 5,000 epochs for the deterministic 
sub-map 𝐃̃Δ. For the stochastic sub-map, we use GANs the 4-layer, each of which with 80 nodes. Once trained, we conduct system 
prediction using the learned sFML model for time up to 𝑇 = 6.5. Some sample trajectories are shown on the right of Fig. 33, for an 
initial condition of 𝐱0 = (0.3, 0.4).

The mean and standard deviation of the system prediction by the learned sFML model are shown in Fig. 34, along with those 
of the true solution. Good accuracy of the model prediction is observed. In Fig. 35, we present the marginal distributions of the 
conditional probability distribution produced by the learned stochastic flow map 𝐆̃Δ(𝐱) at 𝐱 = (−0.5, −0.5), in comparison with those 
of the true conditional distribution from 𝐆Δ. In this particularly case, the marginal distribution in 𝑥1 is a Dirac measure, as the 
19

equation of 𝑥1 is deterministic. We observe that the learned sFML model produces very accurate prediction for such an extreme case.
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Fig. 30. Learning the 2d OU process (5.12). Top row: samples of the training data for 𝑥1 (left) and 𝑥2 (right); Bottom row: The sFML model prediction trajectories for 
𝑥1 (left) and 𝑥2 (right), with an initial condition 𝐱0 = (0.3, 0.4).

Fig. 31. Solution mean and standard deviation of the sFML model prediction for the 2d OU process (5.12). Left: 𝑥1 ; Right: 𝑥2 .

6. Conclusions

In this paper, we proposed a general numerical framework for modeling unknown stochastic system by using observed trajectory 
data. Our method is based on constructing an approximation of the underlying flow map of the unknown stochastic system. The 
constructed flow map consists of two parts: a deterministic sub-map and a stochastic sub-map, both of which are learned by using 
the same observation data set. While a standard feedforward DNN is used to learn the deterministic sub-map, which predicts the 
conditional mean of the underlying dynamics, a generative DNN is used to learn the stochastic sub-map, which captures the noisy 
dynamics. In this paper, we employ GANs as the stochastic sub-map generator. By using a comprehensive set of numerical examples, 
we demonstrated that the proposed approach is highly effective and accurate to model a variety of stochastic systems. The learned 
20

generative model is able to conduct long-term system predictions beyond the time domain of the training data. More research is 
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Fig. 32. Learning the 2d OU process (5.12).: conditional probability distribution from the learned sFML generator 𝐆̃Δ(𝐱) (left) and from the true generator 𝐆Δ(𝐱)
(right) at 𝐱 = (0, 0).

Fig. 33. Stochastic oscillator (5.13). Left: samples of the phase portrait of the training trajectory data (up to 𝑇 = 1.0); Right: phase portrait of samples of the sFML 
prediction solution for up to 𝑇 = 6.5, with the initial condition 𝐱0 = (0.3, 0.4).
21

Fig. 34. Mean and standard deviation of the stochastic oscillator (5.13). Left: 𝑥1 ; Right: 𝑥2 .
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Fig. 35. Stochastic oscillator (5.13): marginal distributions for 𝑥1 (left) and 𝑥2 (right) generated by the learned model 𝐆̃Δ(𝐱) and the true model 𝐆Δ(𝐱) at 𝐱 =
(−0.5, −0.5).

needed to further examine and understand the proposed method. For example, other generative models such as normalizing flow can 
be used for the construction of the stochastic sub-map, as GANs are known to be difficult to train. Also, in the current setting, our 
method is restricted to data with a constant time step Δ𝑡. The learning of stochastic systems also requires a large number of data. 
These issues will be studied and reported in future work.
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